/usr/include/shogun/machine/gp/StudentsTLikelihood.h is in libshogun-dev 3.2.0-7.3build4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 2013 Roman Votyakov
* Copyright (C) 2012 Jacob Walker
* Copyright (C) 2013 Roman Votyakov
*
* Code adapted from the GPML Toolbox:
* http://www.gaussianprocess.org/gpml/code/matlab/doc/
*/
#ifndef CSTUDENTSTLIKELIHOOD_H_
#define CSTUDENTSTLIKELIHOOD_H_
#include <shogun/lib/config.h>
#ifdef HAVE_EIGEN3
#include <shogun/machine/gp/LikelihoodModel.h>
namespace shogun
{
/** @brief Class that models a Student's-t likelihood.
*
* \f[
* p(y|f)=\prod_{i=1}^{n} \frac{\Gamma(\frac{\nu+1}{2})}
* {\Gamma(\frac{\nu}{2})\sqrt{\nu\pi}\sigma}
* \left(1+\frac{(y_i-f_i)^2}{\nu\sigma^2} \right)^{-\frac{\nu+1}{2}}
* \f]
*
* The hyperparameters of the Student's t-likelihood model are \f$\sigma\f$ -
* scale parameter, and \f$\nu\f$ - degrees of freedom.
*/
class CStudentsTLikelihood: public CLikelihoodModel
{
public:
/** default constructor */
CStudentsTLikelihood();
/** constructor
*
* @param sigma noise variance
* @param df degrees of freedom
*/
CStudentsTLikelihood(float64_t sigma, float64_t df);
virtual ~CStudentsTLikelihood();
/** returns the name of the likelihood model
*
* @return name StudentsTLikelihood
*/
virtual const char* get_name() const { return "StudentsTLikelihood"; }
/** returns the scale paramter
*
* @return scale parameter
*/
float64_t get_sigma() { return m_sigma; }
/** sets the scale parameter
*
* @param sigma scale parameter
*/
void set_sigma(float64_t sigma)
{
REQUIRE(sigma>0.0, "Scale parameter must be greater than zero\n")
m_sigma=sigma;
}
/** get degrees of freedom
*
* @return degrees of freedom
*/
float64_t get_degrees_freedom() { return m_df; }
/** set degrees of freedom
*
* @param df degrees of freedom
*/
void set_degrees_freedom(float64_t df)
{
REQUIRE(df>1.0, "Number of degrees of freedom must be greater than one\n")
m_df=df;
}
/** helper method used to specialize a base class instance
*
* @param likelihood likelihood model
* @return casted CStudentsTLikelihood object
*/
static CStudentsTLikelihood* obtain_from_generic(CLikelihoodModel* likelihood);
/** returns mean of the predictive marginal \f$p(y_*|X,y,x_*)\f$.
*
* NOTE: if lab equals to NULL, then each \f$y_*\f$ equals to one.
*
* @param mu posterior mean of a Gaussian distribution
* \f$\mathcal{N}(\mu,\sigma^2)\f$, which is an approximation to the
* posterior marginal \f$p(f_*|X,y,x_*)\f$
* @param s2 posterior variance of a Gaussian distribution
* \f$\mathcal{N}(\mu,\sigma^2)\f$, which is an approximation to the
* posterior marginal \f$p(f_*|X,y,x_*)\f$
* @param lab labels \f$y_*\f$
*
* @return final means evaluated by likelihood function
*/
virtual SGVector<float64_t> get_predictive_means(SGVector<float64_t> mu,
SGVector<float64_t> s2, const CLabels* lab=NULL) const;
/** returns variance of the predictive marginal \f$p(y_*|X,y,x_*)\f$.
*
* NOTE: if lab equals to NULL, then each \f$y_*\f$ equals to one.
*
* @param mu posterior mean of a Gaussian distribution
* \f$\mathcal{N}(\mu,\sigma^2)\f$, which is an approximation to the
* posterior marginal \f$p(f_*|X,y,x_*)\f$
* @param s2 posterior variance of a Gaussian distribution
* \f$\mathcal{N}(\mu,\sigma^2)\f$, which is an approximation to the
* posterior marginal \f$p(f_*|X,y,x_*)\f$
* @param lab labels \f$y_*\f$
*
* @return final variances evaluated by likelihood function
*/
virtual SGVector<float64_t> get_predictive_variances(SGVector<float64_t> mu,
SGVector<float64_t> s2, const CLabels* lab=NULL) const;
/** get model type
*
* @return model type Student's-t
*/
virtual ELikelihoodModelType get_model_type() const { return LT_STUDENTST; }
/** returns the logarithm of the point-wise likelihood \f$log(p(y_i|f_i))\f$
* for each label \f$y_i\f$.
*
* One can evaluate log-likelihood like: \f$log(p(y|f)) = \sum_{i=1}^{n}
* log(p(y_i|f_i))\f$
*
* @param lab labels \f$y_i\f$
* @param func values of the function \f$f_i\f$
*
* @return logarithm of the point-wise likelihood
*/
virtual SGVector<float64_t> get_log_probability_f(const CLabels* lab,
SGVector<float64_t> func) const;
/** get derivative of log likelihood \f$log(P(y|f))\f$ with respect to
* function location \f$f\f$
*
* @param lab labels used
* @param func function location
* @param i index, choices are 1, 2, and 3 for first, second, and third
* derivatives respectively
*
* @return derivative
*/
virtual SGVector<float64_t> get_log_probability_derivative_f(
const CLabels* lab, SGVector<float64_t> func, index_t i) const;
/** get derivative of log likelihood \f$log(P(y|f))\f$ with respect to given
* parameter
*
* @param lab labels used
* @param func function location
* @param param parameter
*
* @return derivative
*/
virtual SGVector<float64_t> get_first_derivative(const CLabels* lab,
SGVector<float64_t> func, const TParameter* param) const;
/** get derivative of the first derivative of log likelihood with respect to
* function location, i.e. \f$\frac{\partial log(P(y|f))}{\partial f}\f$
* with respect to given parameter
*
* @param lab labels used
* @param func function location
* @param param parameter
*
* @return derivative
*/
virtual SGVector<float64_t> get_second_derivative(const CLabels* lab,
SGVector<float64_t> func, const TParameter* param) const;
/** get derivative of the second derivative of log likelihood with respect
* to function location, i.e. \f$\frac{\partial^{2} log(P(y|f))}{\partial
* f^{2}}\f$ with respect to given parameter
*
* @param lab labels used
* @param func function location
* @param param parameter
*
* @return derivative
*/
virtual SGVector<float64_t> get_third_derivative(const CLabels* lab,
SGVector<float64_t> func, const TParameter* param) const;
/** returns the zeroth moment of a given (unnormalized) probability
* distribution:
*
* \f[
* log(Z_i) = log\left(\int p(y_i|f_i) \mathcal{N}(f_i|\mu,\sigma^2)
* df_i\right)
* \f]
*
* for each \f$f_i\f$.
*
* @param mu mean of the \f$\mathcal{N}(f_i|\mu,\sigma^2)\f$
* @param s2 variance of the \f$\mathcal{N}(f_i|\mu,\sigma^2)\f$
* @param lab labels \f$y_i\f$
*
* @return log zeroth moments \f$log(Z_i)\f$
*/
virtual SGVector<float64_t> get_log_zeroth_moments(SGVector<float64_t> mu,
SGVector<float64_t> s2, const CLabels* lab) const;
/** returns the first moment of a given (unnormalized) probability
* distribution \f$q(f_i) = Z_i^-1
* p(y_i|f_i)\mathcal{N}(f_i|\mu,\sigma^2)\f$, where \f$ Z_i=\int
* p(y_i|f_i)\mathcal{N}(f_i|\mu,\sigma^2) df_i\f$.
*
* This method is useful for EP local likelihood approximation.
*
* @param mu mean of the \f$\mathcal{N}(f_i|\mu,\sigma^2)\f$
* @param s2 variance of the \f$\mathcal{N}(f_i|\mu,\sigma^2)\f$
* @param lab labels \f$y_i\f$
* @param i index i
*
* @return first moment of \f$q(f_i)\f$
*/
virtual float64_t get_first_moment(SGVector<float64_t> mu,
SGVector<float64_t> s2, const CLabels* lab, index_t i) const;
/** returns the second moment of a given (unnormalized) probability
* distribution \f$q(f_i) = Z_i^-1
* p(y_i|f_i)\mathcal{N}(f_i|\mu,\sigma^2)\f$, where \f$ Z_i=\int
* p(y_i|f_i)\mathcal{N}(f_i|\mu,\sigma^2) df_i\f$.
*
* This method is useful for EP local likelihood approximation.
*
* @param mu mean of the \f$\mathcal{N}(f_i|\mu,\sigma^2)\f$
* @param s2 variance of the \f$\mathcal{N}(f_i|\mu,\sigma^2)\f$
* @param lab labels \f$y_i\f$
* @param i index i
*
* @return the second moment of \f$q(f_i)\f$
*/
virtual float64_t get_second_moment(SGVector<float64_t> mu,
SGVector<float64_t> s2, const CLabels* lab, index_t i) const;
/** return whether Student's likelihood function supports regression
*
* @return true
*/
virtual bool supports_regression() const { return true; }
private:
/** initialize function */
void init();
/** scale parameter */
float64_t m_sigma;
/** degrees of freedom */
float64_t m_df;
};
}
#endif /* HAVE_EIGEN3 */
#endif /* CSTUDENTSTLIKELIHOOD_H_ */
|