This file is indexed.

/usr/include/shogun/machine/gp/LaplacianInferenceMethod.h is in libshogun-dev 3.2.0-7.3build4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 2013 Roman Votyakov
 * Copyright (C) 2012 Jacob Walker
 * Copyright (C) 2013 Roman Votyakov
 *
 * Code adapted from Gaussian Process Machine Learning Toolbox
 * http://www.gaussianprocess.org/gpml/code/matlab/doc/
 */

#ifndef CLAPLACIANINFERENCEMETHOD_H_
#define CLAPLACIANINFERENCEMETHOD_H_

#include <shogun/lib/config.h>

#ifdef HAVE_EIGEN3

#include <shogun/machine/gp/InferenceMethod.h>

namespace shogun
{

/** @brief The Laplace approximation inference method class.
 *
 * This inference method approximates the posterior likelihood function by using
 * Laplace's method. Here, we compute a Gaussian approximation to the posterior
 * via a Taylor expansion around the maximum of the posterior likelihood
 * function.
 *
 * For more details, see "Bayesian Classification with Gaussian Processes" by
 * Christopher K.I Williams and David Barber, published 1998 in the IEEE
 * Transactions on Pattern Analysis and Machine Intelligence, Volume 20, Number
 * 12, Pages 1342-1351.
 *
 * This specific implementation was adapted from the infLaplace.m file in the
 * GPML toolbox.
 */
class CLaplacianInferenceMethod: public CInferenceMethod
{
public:
	/** default constructor */
	CLaplacianInferenceMethod();

	/** constructor
	 *
	 * @param kernel covariance function
	 * @param features features to use in inference
	 * @param mean mean function
	 * @param labels labels of the features
	 * @param model Likelihood model to use
	 */
	CLaplacianInferenceMethod(CKernel* kernel, CFeatures* features,
			CMeanFunction* mean, CLabels* labels, CLikelihoodModel* model);

	virtual ~CLaplacianInferenceMethod();

	/** return what type of inference we are
	 *
	 * @return inference type LAPLACIAN
	 */
	virtual EInferenceType get_inference_type() const { return INF_LAPLACIAN; }

	/** returns the name of the inference method
	 *
	 * @return name Laplacian
	 */
	virtual const char* get_name() const { return "LaplacianInferenceMethod"; }

	/** get negative log marginal likelihood
	 *
	 * @return the negative log of the marginal likelihood function:
	 *
	 * \f[
	 * -log(p(y|X, \theta))
	 * \f]
	 *
	 * where \f$y\f$ are the labels, \f$X\f$ are the features, and
	 * \f$\theta\f$ represent hyperparameters.
	 */
	virtual float64_t get_negative_log_marginal_likelihood();

	/** get alpha vector
	 *
	 * @return vector to compute posterior mean of Gaussian Process:
	 *
	 * \f[
	 * \mu = K\alpha
	 * \f]
	 *
	 * where \f$\mu\f$ is the mean and \f$K\f$ is the prior covariance matrix.
	 */
	virtual SGVector<float64_t> get_alpha();

	/** get Cholesky decomposition matrix
	 *
	 * @return Cholesky decomposition of matrix:
	 *
	 * \f[
	 * L = Cholesky(W^{\frac{1}{2}}*K*W^{\frac{1}{2}}+I)
	 * \f]
	 *
	 * where \f$K\f$ is the prior covariance matrix, \f$sW\f$ is the vector
	 * returned by get_diagonal_vector(), and \f$I\f$ is the identity matrix.
	 */
	virtual SGMatrix<float64_t> get_cholesky();

	/** get diagonal vector
	 *
	 * @return diagonal of matrix used to calculate posterior covariance matrix:
	 *
	 * \f[
	 * Cov = (K^{-1}+sW^{2})^{-1}
	 * \f]
	 *
	 * where \f$Cov\f$ is the posterior covariance matrix, \f$K\f$ is the prior
	 * covariance matrix, and \f$sW\f$ is the diagonal vector.
	 */
	virtual SGVector<float64_t> get_diagonal_vector();

	/** returns mean vector \f$\mu\f$ of the Gaussian distribution
	 * \f$\mathcal{N}(\mu,\Sigma)\f$, which is an approximation to the
	 * posterior:
	 *
	 * \f[
	 * p(f|y) \approx q(f|y) = \mathcal{N}(f|\mu,\Sigma)
	 * \f]
	 *
	 * Mean vector \f$\mu\f$ is evaluated using Newton's method.
	 *
	 * @return mean vector
	 */
	virtual SGVector<float64_t> get_posterior_mean();

	/** returns covariance matrix \f$\Sigma=(K^{-1}+W)^{-1}\f$ of the Gaussian
	 * distribution \f$\mathcal{N}(\mu,\Sigma)\f$, which is an approximation to
	 * the posterior:
	 *
	 * \f[
	 * p(f|y) \approx q(f|y) = \mathcal{N}(f|\mu,\Sigma)
	 * \f]
	 *
	 * Covariance matrix is evaluated using matrix inversion lemma:
	 *
	 * \f[
	 * (K^{-1}+W)^{-1} = K - KW^{\frac{1}{2}}B^{-1}W^{\frac{1}{2}}K
	 * \f]
	 *
	 * where \f$B=(W^{frac{1}{2}}*K*W^{frac{1}{2}}+I)\f$.
	 *
	 * @return covariance matrix
	 */
	virtual SGMatrix<float64_t> get_posterior_covariance();

	/** get tolerance for newton iterations
	 *
	 * @return tolerance for newton iterations
	 */
	virtual float64_t get_newton_tolerance() { return m_tolerance; }

	/** set tolerance for newton iterations
	 *
	 * @param tol tolerance for newton iterations to set
	 */
	virtual void set_newton_tolerance(float64_t tol) { m_tolerance=tol; }

	/** get max Newton iterations
	 *
	 * @return max Newton iterations
	 */
	virtual int32_t get_newton_iterations() { return m_iter; }

	/** set max Newton iterations
	 *
	 * @param iter max Newton iterations
	 */
	virtual void set_newton_iterations(int32_t iter) { m_iter=iter; }

	/** get tolerance for Brent's minimization method
	 *
	 * @return tolerance for Brent's minimization method
	 */
	virtual float64_t get_minimization_tolerance() { return m_opt_tolerance; }

	/** set tolerance for Brent's minimization method
	 *
	 * @param tol tolerance for Brent's minimization method
	 */
	virtual void set_minimization_tolerance(float64_t tol) { m_opt_tolerance=tol; }

	/** get maximum for Brent's minimization method
	 *
	 * @return maximum for Brent's minimization method
	 */
	virtual float64_t get_minimization_max() { return m_opt_max; }

	/** set maximum for Brent's minimization method
	 *
	 * @param max maximum for Brent's minimization method
	 */
	virtual void set_minimization_max(float64_t max) { m_opt_max=max; }

	/**
	 * @return whether combination of Laplace approximation inference method and
	 * given likelihood function supports regression
	 */
	virtual bool supports_regression() const
	{
		check_members();
		return m_model->supports_regression();
	}

	/**
	 * @return whether combination of Laplace approximation inference method and
	 * given likelihood function supports binary classification
	 */
	virtual bool supports_binary() const
	{
		check_members();
		return m_model->supports_binary();
	}

	/** update data all matrices */
	virtual void update();

protected:
	/** update alpha matrix */
	virtual void update_alpha();

	/** update cholesky matrix */
	virtual void update_chol();

	/** update covariance matrix of the approximation to the posterior */
	virtual void update_approx_cov();

	/** update matrices which are required to compute negative log marginal
	 * likelihood derivatives wrt hyperparameter
	 */
	virtual void update_deriv();

	/** returns derivative of negative log marginal likelihood wrt parameter of
	 * CInferenceMethod class
	 *
	 * @param param parameter of CInferenceMethod class
	 *
	 * @return derivative of negative log marginal likelihood
	 */
	virtual SGVector<float64_t> get_derivative_wrt_inference_method(
			const TParameter* param);

	/** returns derivative of negative log marginal likelihood wrt parameter of
	 * likelihood model
	 *
	 * @param param parameter of given likelihood model
	 *
	 * @return derivative of negative log marginal likelihood
	 */
	virtual SGVector<float64_t> get_derivative_wrt_likelihood_model(
			const TParameter* param);

	/** returns derivative of negative log marginal likelihood wrt kernel's
	 * parameter
	 *
	 * @param param parameter of given kernel
	 *
	 * @return derivative of negative log marginal likelihood
	 */
	virtual SGVector<float64_t> get_derivative_wrt_kernel(
			const TParameter* param);

	/** returns derivative of negative log marginal likelihood wrt mean
	 * function's parameter
	 *
	 * @param param parameter of given mean function
	 *
	 * @return derivative of negative log marginal likelihood
	 */
	virtual SGVector<float64_t> get_derivative_wrt_mean(
			const TParameter* param);

private:
	void init();

private:
	/** amount of tolerance for Newton's iterations */
	float64_t m_tolerance;

	/** max Newton's iterations */
	index_t m_iter;

	/** amount of tolerance for Brent's minimization method */
	float64_t m_opt_tolerance;

	/** max iterations for Brent's minimization method */
	float64_t m_opt_max;

	/** mean vector of the approximation to the posterior */
	SGVector<float64_t> m_mu;

	/** covariance matrix of the approximation to the posterior */
	SGMatrix<float64_t> m_Sigma;

	/** noise matrix */
	SGVector<float64_t> W;

	/** square root of W */
	SGVector<float64_t> sW;

	/** derivative of log likelihood with respect to function location */
	SGVector<float64_t> dlp;

	/** second derivative of log likelihood with respect to function location */
	SGVector<float64_t> d2lp;

	/** third derivative of log likelihood with respect to function location */
	SGVector<float64_t> d3lp;

	SGVector<float64_t> m_dfhat;

	SGMatrix<float64_t> m_Z;

	SGVector<float64_t> m_g;
};
}
#endif /* HAVE_EIGEN3 */
#endif /* CLAPLACIANINFERENCEMETHOD_H_ */