/usr/include/shogun/machine/gp/FITCInferenceMethod.h is in libshogun-dev 3.2.0-7.3build4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 2013 Roman Votyakov
* Copyright (C) 2012 Jacob Walker
* Copyright (C) 2013 Roman Votyakov
*
* Code adapted from Gaussian Process Machine Learning Toolbox
* http://www.gaussianprocess.org/gpml/code/matlab/doc/
*/
#ifndef CFITCINFERENCEMETHOD_H_
#define CFITCINFERENCEMETHOD_H_
#include <shogun/lib/config.h>
#ifdef HAVE_EIGEN3
#include <shogun/machine/gp/InferenceMethod.h>
namespace shogun
{
/** @brief The Fully Independent Conditional Training inference method class.
*
* This inference method computes the Cholesky and Alpha vectors approximately
* with the help of latent variables. For more details, see "Sparse Gaussian
* Process using Pseudo-inputs", Edward Snelson, Zoubin Ghahramani, NIPS 18, MIT
* Press, 2005.
*
* This specific implementation was inspired by the infFITC.m file in the GPML
* toolbox.
*
* NOTE: The Gaussian Likelihood Function must be used for this inference
* method.
*/
class CFITCInferenceMethod: public CInferenceMethod
{
public:
/** default constructor */
CFITCInferenceMethod();
/** constructor
*
* @param kernel covariance function
* @param features features to use in inference
* @param mean mean function
* @param labels labels of the features
* @param model likelihood model to use
* @param latent_features features to use
*/
CFITCInferenceMethod(CKernel* kernel, CFeatures* features,
CMeanFunction* mean, CLabels* labels, CLikelihoodModel* model,
CFeatures* latent_features);
virtual ~CFITCInferenceMethod();
/** return what type of inference we are
*
* @return inference type FITC
*/
virtual EInferenceType get_inference_type() const { return INF_FITC; }
/** returns the name of the inference method
*
* @return name FITC
*/
virtual const char* get_name() const { return "FITCInferenceMethod"; }
/** helper method used to specialize a base class instance
*
* @param inference inference method
* @return casted CFITCInferenceMethod object
*/
static CFITCInferenceMethod* obtain_from_generic(CInferenceMethod* inference);
/** set latent features
*
* @param feat features to set
*/
virtual void set_latent_features(CFeatures* feat)
{
SG_REF(feat);
SG_UNREF(m_latent_features);
m_latent_features=feat;
}
/** get latent features
*
* @return features
*/
virtual CFeatures* get_latent_features()
{
SG_REF(m_latent_features);
return m_latent_features;
}
/** get negative log marginal likelihood
*
* @return the negative log of the marginal likelihood function:
*
* \f[
* -log(p(y|X, \theta))
* \f]
*
* where \f$y\f$ are the labels, \f$X\f$ are the features, and \f$\theta\f$
* represent hyperparameters.
*/
virtual float64_t get_negative_log_marginal_likelihood();
/** get alpha vector
*
* @return vector to compute posterior mean of Gaussian Process:
*
* \f[
* \mu = K\alpha
* \f]
*
* where \f$\mu\f$ is the mean and \f$K\f$ is the prior covariance matrix.
*/
virtual SGVector<float64_t> get_alpha();
/** get Cholesky decomposition matrix
*
* @return Cholesky decomposition of matrix:
*
* \f[
* L = Cholesky(sW*K*sW+I)
* \f]
*
* where \f$K\f$ is the prior covariance matrix, \f$sW\f$ is the vector
* returned by get_diagonal_vector(), and \f$I\f$ is the identity matrix.
*/
virtual SGMatrix<float64_t> get_cholesky();
/** get diagonal vector
*
* @return diagonal of matrix used to calculate posterior covariance matrix:
*
* \f[
* Cov = (K^{-1}+sW^{2})^{-1}
* \f]
*
* where \f$Cov\f$ is the posterior covariance matrix, \f$K\f$ is the prior
* covariance matrix, and \f$sW\f$ is the diagonal vector.
*/
virtual SGVector<float64_t> get_diagonal_vector();
/** returns mean vector \f$\mu\f$ of the Gaussian distribution
* \f$\mathcal{N}(\mu,\Sigma)\f$, which is an approximation to the
* posterior:
*
* \f[
* p(f|y) \approx q(f|y) = \mathcal{N}(\mu,\Sigma)
* \f]
*
* in case if particular inference method doesn't compute posterior
* \f$p(f|y)\f$ exactly, and it returns covariance matrix \f$\Sigma\f$ of
* the posterior Gaussian distribution \f$\mathcal{N}(\mu,\Sigma)\f$
* otherwise.
*
* @return mean vector
*/
virtual SGVector<float64_t> get_posterior_mean();
/** returns covariance matrix \f$\Sigma\f$ of the Gaussian distribution
* \f$\mathcal{N}(\mu,\Sigma)\f$, which is an approximation to the
* posterior:
*
* \f[
* p(f|y) \approx q(f|y) = \mathcal{N}(\mu,\Sigma)
* \f]
*
* in case if particular inference method doesn't compute posterior
* \f$p(f|y)\f$ exactly, and it returns covariance matrix \f$\Sigma\f$ of
* the posterior Gaussian distribution \f$\mathcal{N}(\mu,\Sigma)\f$
* otherwise.
*
* @return covariance matrix
*/
virtual SGMatrix<float64_t> get_posterior_covariance();
/**
* @return whether combination of FITC inference method and given likelihood
* function supports regression
*/
virtual bool supports_regression() const
{
check_members();
return m_model->supports_regression();
}
/** update all matrices */
virtual void update();
protected:
/** check if members of object are valid for inference */
virtual void check_members() const;
/** update alpha matrix */
virtual void update_alpha();
/** update cholesky Matrix.*/
virtual void update_chol();
/** update train kernel matrix */
virtual void update_train_kernel();
/** update matrices which are required to compute negative log marginal
* likelihood derivatives wrt hyperparameter
*/
virtual void update_deriv();
/** returns derivative of negative log marginal likelihood wrt parameter of
* CInferenceMethod class
*
* @param param parameter of CInferenceMethod class
*
* @return derivative of negative log marginal likelihood
*/
virtual SGVector<float64_t> get_derivative_wrt_inference_method(
const TParameter* param);
/** returns derivative of negative log marginal likelihood wrt parameter of
* likelihood model
*
* @param param parameter of given likelihood model
*
* @return derivative of negative log marginal likelihood
*/
virtual SGVector<float64_t> get_derivative_wrt_likelihood_model(
const TParameter* param);
/** returns derivative of negative log marginal likelihood wrt kernel's
* parameter
*
* @param param parameter of given kernel
*
* @return derivative of negative log marginal likelihood
*/
virtual SGVector<float64_t> get_derivative_wrt_kernel(
const TParameter* param);
/** returns derivative of negative log marginal likelihood wrt mean
* function's parameter
*
* @param param parameter of given mean function
*
* @return derivative of negative log marginal likelihood
*/
virtual SGVector<float64_t> get_derivative_wrt_mean(
const TParameter* param);
private:
void init();
private:
/** latent features for approximation */
CFeatures* m_latent_features;
/** noise of the latent variables */
float64_t m_ind_noise;
/** Cholesky of covariance of latent features */
SGMatrix<float64_t> m_chol_uu;
/** Cholesky of covariance of latent features and training features */
SGMatrix<float64_t> m_chol_utr;
/** covariance matrix of latent features */
SGMatrix<float64_t> m_kuu;
/** covariance matrix of latent features and training features */
SGMatrix<float64_t> m_ktru;
/** diagonal of training kernel matrix + noise - diagonal of the matrix
* (m_chol_uu^{-1}*m_ktru)* (m_chol_uu^(-1)*m_ktru)' = V*V'
*/
SGVector<float64_t> m_dg;
/** labels adjusted for noise and means */
SGVector<float64_t> m_r;
/** solves the equation V * r = m_chol_utr */
SGVector<float64_t> m_be;
SGVector<float64_t> m_al;
SGMatrix<float64_t> m_B;
SGVector<float64_t> m_w;
SGMatrix<float64_t> m_W;
};
}
#endif /* HAVE_EIGEN3 */
#endif /* CFITCINFERENCEMETHOD_H_ */
|