/usr/include/shogun/machine/gp/EPInferenceMethod.h is in libshogun-dev 3.2.0-7.3build4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 2013 Roman Votyakov
*
* Based on ideas from GAUSSIAN PROCESS REGRESSION AND CLASSIFICATION Toolbox
* Copyright (C) 2005-2013 by Carl Edward Rasmussen & Hannes Nickisch under the
* FreeBSD License
* http://www.gaussianprocess.org/gpml/code/matlab/doc/
*/
#ifndef _EPINFERENCEMETHOD_H_
#define _EPINFERENCEMETHOD_H_
#include <shogun/lib/config.h>
#ifdef HAVE_EIGEN3
#include <shogun/machine/gp/InferenceMethod.h>
namespace shogun
{
/** @brief Class of the Expectation Propagation (EP) posterior approximation
* inference method.
*
* For more details, see: Minka, T. P. (2001). A Family of Algorithms for
* Approximate Bayesian Inference. PhD thesis, Massachusetts Institute of
* Technology
*/
class CEPInferenceMethod : public CInferenceMethod
{
public:
/** default constructor */
CEPInferenceMethod();
/** constructor
*
* @param kernel covariance function
* @param features features to use in inference
* @param mean mean function
* @param labels labels of the features
* @param model likelihood model to use
*/
CEPInferenceMethod(CKernel* kernel, CFeatures* features, CMeanFunction* mean,
CLabels* labels, CLikelihoodModel* model);
virtual ~CEPInferenceMethod();
/** return what type of inference we are
*
* @return inference type EP
*/
virtual EInferenceType get_inference_type() const { return INF_EP; }
/** returns the name of the inference method
*
* @return name EP
*/
virtual const char* get_name() const { return "EPInferenceMethod"; }
/** returns the negative logarithm of the marginal likelihood function:
*
* \f[
* -log(p(y|X, \theta))
* \f]
*
* where \f$y\f$ are the labels, \f$X\f$ are the features, and \f$\theta\f$
* represent hyperparameters.
*
* @return negative log marginal likelihood
*/
virtual float64_t get_negative_log_marginal_likelihood();
/** returns vector to compute posterior mean of Gaussian Process under EP
* approximation:
*
* \f[
* \mathbb{E}_q[f_*|X,y,x_*] = k^T_*\alpha
* \f]
*
* where \f$k^T_*\f$ - covariance between training points \f$X\f$ and test
* point \f$x_*\f$, and for EP approximation:
*
* \f[
* \alpha = (K + \tilde{S}^{-1})^{-1}\tilde{S}^{-1}\tilde{\nu} =
* (I-\tilde{S}^{\frac{1}{2}}B^{-1}\tilde{S}^{\frac{1}{2}}K)\tilde{\nu}
* \f]
*
* where \f$K\f$ is the prior covariance matrix,
* \f$\tilde{S}^{\frac{1}{2}}\f$ is the diagonal matrix (see description of
* get_diagonal_vector() method) and \f$\tilde{\nu}\f$ - natural parameter
* (\f$\tilde{\nu} = \tilde{S}\tilde{\mu}\f$).
*
* @return vector \f$\alpha\f$
*/
virtual SGVector<float64_t> get_alpha();
/** returns upper triangular factor \f$L^T\f$ of the Cholesky decomposition
* (\f$LL^T\f$) of the matrix:
*
* \f[
* B = (\tilde{S}^{\frac{1}{2}}K\tilde{S}^{\frac{1}{2}}+I)
* \f]
*
* where \f$\tilde{S}^{\frac{1}{2}}\f$ is the diagonal matrix (see
* description of get_diagonal_vector() method) and \f$K\f$ is the prior
* covariance matrix.
* @return upper triangular factor of the Cholesky decomposition of the
* matrix \f$B\f$
*/
virtual SGMatrix<float64_t> get_cholesky();
/** returns diagonal vector of the diagonal matrix:
*
* \f[
* \tilde{S}^{\frac{1}{2}} = \sqrt{\tilde{S}}
* \f]
*
* where \f$\tilde{S} = \text{diag}(\tilde{\tau})\f$, and \f$\tilde{\tau}\f$
* - natural parameter (\f$\tilde{\tau}_i = \tilde{\sigma}_i^{-2}\f$).
*
* @return diagonal vector of the matrix \f$\tilde{S}^{\frac{1}{2}}\f$
*/
virtual SGVector<float64_t> get_diagonal_vector();
/** returns mean vector \f$\mu\f$ of the Gaussian distribution
* \f$\mathcal{N}(\mu,\Sigma)\f$, which is an approximation to the
* posterior:
*
* \f[
* p(f|X,y) \approx q(f|X,y) = \mathcal{N}(f|\mu,\Sigma)
* \f]
*
* Mean vector \f$\mu\f$ is evaluated like:
*
* \f[
* \mu = \Sigma\tilde{\nu}
* \f]
*
* where \f$\Sigma\f$ - covariance matrix of the posterior approximation and
* \f$\tilde{\nu}\f$ - natural parameter (\f$\tilde{\nu} =
* \tilde{S}\tilde{\mu}\f$).
*
* @return mean vector \f$\mu\f$
*/
virtual SGVector<float64_t> get_posterior_mean();
/** returns covariance matrix \f$\Sigma=(K^{-1}+\tilde{S})^{-1}\f$ of the
* Gaussian distribution \f$\mathcal{N}(\mu,\Sigma)\f$, which is an
* approximation to the posterior:
*
* \f[
* p(f|X,y) \approx q(f|X,y) = \mathcal{N}(f|\mu,\Sigma)
* \f]
*
* Covariance matrix \f$\Sigma\f$ is evaluated using matrix inversion lemma:
*
* \f[
* \Sigma = (K^{-1}+\tilde{S})^{-1} = K -
* K\tilde{S}^{\frac{1}{2}}B^{-1}\tilde{S}^{\frac{1}{2}}K
* \f]
*
* where \f$B=(\tilde{S}^{\frac{1}{2}}K\tilde{S}^{\frac{1}{2}}+I)\f$.
*
* @return covariance matrix \f$\Sigma\f$
*/
virtual SGMatrix<float64_t> get_posterior_covariance();
/** returns tolerance of the EP approximation
*
* @return tolerance
*/
virtual float64_t get_tolerance() const { return m_tol; }
/** sets tolerance of the EP approximation
*
* @param tol tolerance to set
*/
virtual void set_tolerance(const float64_t tol) { m_tol=tol; }
/** returns minimum number of sweeps over all variables
*
* @return minimum number of sweeps
*/
virtual uint32_t get_min_sweep() const { return m_min_sweep; }
/** sets minimum number of sweeps over all variables
*
* @param min_sweep minimum number of sweeps to set
*/
virtual void set_min_sweep(const uint32_t min_sweep) { m_min_sweep=min_sweep; }
/** returns maximum number of sweeps over all variables
*
* @return maximum number of sweeps
*/
virtual uint32_t get_max_sweep() const { return m_max_sweep; }
/** sets maximum number of sweeps over all variables
*
* @param max_sweep maximum number of sweeps to set
*/
virtual void set_max_sweep(const uint32_t max_sweep) { m_max_sweep=max_sweep; }
/**
* @return whether combination of Laplace approximation inference method and
* given likelihood function supports binary classification
*/
virtual bool supports_binary() const
{
check_members();
return m_model->supports_binary();
}
/** update data all matrices */
virtual void update();
protected:
/** update alpha matrix */
virtual void update_alpha();
/** update Cholesky matrix */
virtual void update_chol();
/** update covariance matrix of the approximation to the posterior */
virtual void update_approx_cov();
/** update mean vector of the approximation to the posterior */
virtual void update_approx_mean();
/** update negative marginal likelihood */
virtual void update_negative_ml();
/** update matrices which are required to compute negative log marginal
* likelihood derivatives wrt hyperparameter
*/
virtual void update_deriv();
/** returns derivative of negative log marginal likelihood wrt parameter of
* CInferenceMethod class
*
* @param param parameter of CInferenceMethod class
*
* @return derivative of negative log marginal likelihood
*/
virtual SGVector<float64_t> get_derivative_wrt_inference_method(
const TParameter* param);
/** returns derivative of negative log marginal likelihood wrt parameter of
* likelihood model
*
* @param param parameter of given likelihood model
*
* @return derivative of negative log marginal likelihood
*/
virtual SGVector<float64_t> get_derivative_wrt_likelihood_model(
const TParameter* param);
/** returns derivative of negative log marginal likelihood wrt kernel's
* parameter
*
* @param param parameter of given kernel
*
* @return derivative of negative log marginal likelihood
*/
virtual SGVector<float64_t> get_derivative_wrt_kernel(
const TParameter* param);
/** returns derivative of negative log marginal likelihood wrt mean
* function's parameter
*
* @param param parameter of given mean function
*
* @return derivative of negative log marginal likelihood
*/
virtual SGVector<float64_t> get_derivative_wrt_mean(
const TParameter* param);
private:
void init();
private:
/** mean vector of the approximation to the posterior */
SGVector<float64_t> m_mu;
/** covariance matrix of the approximation to the posterior */
SGMatrix<float64_t> m_Sigma;
/** negative marginal likelihood */
float64_t m_nlZ;
/** vector of natural parameters \f$\tilde{\nu} = \tilde{S}\tilde{\mu}\f$,
* where \f$\tilde{S} = \text{diag}(\tilde{\tau})\f$
*/
SGVector<float64_t> m_tnu;
/** vector of natural parameters \f$\tilde{\tau}_i =
* \tilde{\sigma}_i^{-2}\f$
*/
SGVector<float64_t> m_ttau;
/** square root of the \f$\tilde{\tau}\f$ vector */
SGVector<float64_t> m_sttau;
/** tolerance of the EP approximation */
float64_t m_tol;
/** minimum number of sweeps over all variables */
uint32_t m_min_sweep;
/** maximum number of sweeps over all variables */
uint32_t m_max_sweep;
SGMatrix<float64_t> m_F;
};
}
#endif /* HAVE_EIGEN3 */
#endif /* _EPINFERENCEMETHOD_H_ */
|