This file is indexed.

/usr/include/shogun/machine/StructuredOutputMachine.h is in libshogun-dev 3.2.0-7.3build4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 2013 Shell Hu
 * Written (W) 2012 Fernando José Iglesias García
 * Copyright (C) 2012 Fernando José Iglesias García
 */

#ifndef _STRUCTURED_OUTPUT_MACHINE__H__
#define _STRUCTURED_OUTPUT_MACHINE__H__

#include <shogun/labels/StructuredLabels.h>
#include <shogun/lib/StructuredData.h>
#include <shogun/machine/Machine.h>
#include <shogun/structure/StructuredModel.h>
#include <shogun/loss/LossFunction.h>
#include <shogun/structure/SOSVMHelper.h>

namespace shogun
{

/** The structured empirical risk types, corresponding to different training objectives [1].
 *
 * [1] T. Joachims, T. Finley, Chun-Nam Yu, Cutting-Plane Training of Structural SVMs,
 * Machine Learning Journal, 2009.
 */
enum EStructRiskType
{
	N_SLACK_MARGIN_RESCALING = 0,
	N_SLACK_SLACK_RESCALING = 1,
	ONE_SLACK_MARGIN_RESCALING = 2,
	ONE_SLACK_SLACK_RESCALING = 3,
	CUSTOMIZED_RISK = 4
};

class CStructuredModel;

/** TODO doc */
class CStructuredOutputMachine : public CMachine
{
	public:
		/** problem type */
		MACHINE_PROBLEM_TYPE(PT_STRUCTURED);

		/** deafult constructor */
		CStructuredOutputMachine();

		/** standard constructor
		 *
		 * @param model structured model with application specific functions
		 * @param labs structured labels
		 */
		CStructuredOutputMachine(CStructuredModel* model, CStructuredLabels* labs);

		/** destructor */
		virtual ~CStructuredOutputMachine();

		/** set structured model
		 *
		 * @param model structured model to set
		 */
		void set_model(CStructuredModel* model);

		/** get structured model
		 *
		 * @return structured model
		 */
		CStructuredModel* get_model() const;

		/** @return object name */
		virtual const char* get_name() const
		{
			return "StructuredOutputMachine";
		}

		/** set labels
		 *
		 * @param lab labels
		 */
		virtual void set_labels(CLabels* lab);

		/** set features
		 *
		 * @param f features
		 */
		void set_features(CFeatures* f);

		/** get features
		 *
		 * @return features
		 */
		CFeatures* get_features() const;

		/** set surrogate loss function
		 *
		 * @param loss loss function to set
		 */
		void set_surrogate_loss(CLossFunction* loss);

		/** get surrogate loss function
		 *
		 * @return loss function
		 */
		CLossFunction* get_surrogate_loss() const;

		/** computes the value of the risk function and sub-gradient at given point
		 *
		 * @param subgrad Subgradient computed at given point W
		 * @param W Given weight vector
		 * @param info Helper info for multiple cutting plane models algorithm
		 * @param rtype The type of structured risk
		 * @return Value of the computed risk at given point W
		 */
		virtual float64_t risk(float64_t* subgrad, float64_t* W,
				TMultipleCPinfo* info=0, EStructRiskType rtype = N_SLACK_MARGIN_RESCALING);

		/** @return training progress helper */
		CSOSVMHelper* get_helper() const;

		/** set verbose
		 * NOTE that track verbose information including primal objectives,
		 * training errors and duality gaps will make the training 2x or 3x slower.
		 *
		 * @param verbose flag enabling/disabling verbose information
		 */
		void set_verbose(bool verbose);

		/** get verbose
		 *
		 * @return Status of verbose flag (enabled/disabled)
		 */
		bool get_verbose() const;

	protected:
		/** n-slack formulation and margin rescaling
		 *
		 * The value of the risk is evaluated as
		 *
		 * \f[
		 * R({\bf w}) = \sum_{i=1}^{m} \max_{y \in \mathcal{Y}} \left[ \ell(y_i, y)
		 * + \langle {\bf w}, \Psi(x_i, y) - \Psi(x_i, y_i)  \rangle  \right]
		 * \f]
		 *
		 * The subgradient is by Danskin's theorem given as
		 *
		 * \f[
		 * R'({\bf w}) = \sum_{i=1}^{m} \Psi(x_i, \hat{y}_i) - \Psi(x_i, y_i),
		 * \f]
		 *
		 * where \f$ \hat{y}_i \f$ is the most violated label, i.e.
		 *
		 * \f[
		 * \hat{y}_i = \arg\max_{y \in \mathcal{Y}} \left[ \ell(y_i, y)
		 * + \langle {\bf w}, \Psi(x_i, y)  \rangle \right]
		 * \f]
		 *
		 * @param subgrad Subgradient computed at given point W
		 * @param W Given weight vector
		 * @param info Helper info for multiple cutting plane models algorithm
		 * @return Value of the computed risk at given point W
		 */
		virtual float64_t risk_nslack_margin_rescale(float64_t* subgrad, float64_t* W, TMultipleCPinfo* info=0);

		/** n-slack formulation and slack rescaling
		 *
		 * @param subgrad Subgradient computed at given point W
		 * @param W Given weight vector
		 * @param info Helper info for multiple cutting plane models algorithm
		 * @return Value of the computed risk at given point W
		 */
		virtual float64_t risk_nslack_slack_rescale(float64_t* subgrad, float64_t* W, TMultipleCPinfo* info=0);

		/** 1-slack formulation and margin rescaling
		 *
		 * @param subgrad Subgradient computed at given point W
		 * @param W Given weight vector
		 * @param info Helper info for multiple cutting plane models algorithm
		 * @return Value of the computed risk at given point W
		 */
		virtual float64_t risk_1slack_margin_rescale(float64_t* subgrad, float64_t* W, TMultipleCPinfo* info=0);

		/** 1-slack formulation and slack rescaling
		 *
		 * @param subgrad Subgradient computed at given point W
		 * @param W Given weight vector
		 * @param info Helper info for multiple cutting plane models algorithm
		 * @return Value of the computed risk at given point W
		 */
		virtual float64_t risk_1slack_slack_rescale(float64_t* subgrad, float64_t* W, TMultipleCPinfo* info=0);

		/** customized risk type
		 *
		 * @param subgrad Subgradient computed at given point W
		 * @param W Given weight vector
		 * @param info Helper info for multiple cutting plane models algorithm
		 * @return Value of the computed risk at given point W
		 */
		virtual float64_t risk_customized_formulation(float64_t* subgrad, float64_t* W, TMultipleCPinfo* info=0);

	private:
		/** register class members */
		void register_parameters();

	protected:
		/** the model that contains the application dependent modules */
		CStructuredModel* m_model;

		/** the surrogate loss, for SOSVM, fixed to Hinge loss,
		 * other non-convex losses such as Ramp loss are also applicable,
		 * will be extended in the future
		 */
		CLossFunction* m_surrogate_loss;

		/** the helper that records primal objectives, duality gaps etc */
		CSOSVMHelper* m_helper;

		/** verbose outputs and statistics */
		bool m_verbose;

}; /* class CStructuredOutputMachine */

} /* namespace shogun */

#endif /* _STRUCTURED_OUTPUT_MACHINE__H__ */