This file is indexed.

/usr/include/shogun/machine/DirectorKernelMachine.h is in libshogun-dev 3.2.0-7.3build4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Copyright (C) 2012 Evgeniy Andreev (gsomix)
 */

#ifndef _DIRECTORKERNELMACHINE_H___
#define _DIRECTORKERNELMACHINE_H___

#ifdef USE_SWIG_DIRECTORS
#include <shogun/lib/common.h>
#include <shogun/lib/DataType.h>
#include <shogun/machine/Machine.h>
#include <shogun/machine/KernelMachine.h>

namespace shogun
{

#define IGNORE_IN_CLASSLIST
IGNORE_IN_CLASSLIST class CDirectorKernelMachine : public CKernelMachine
{
	public:
		/* default constructor */
		CDirectorKernelMachine()
		: CKernelMachine()
		{

		}

		/** Convenience constructor to initialize a trained kernel
		 * machine
		 *
		 * @param k kernel
		 * @param alphas vector of alpha weights
		 * @param svs indices of examples, i.e. i's for x_i
		 * @param b bias term
		 */
		CDirectorKernelMachine(CKernel* k, const SGVector<float64_t> alphas, const SGVector<int32_t> svs, float64_t b)
		: CKernelMachine(k, alphas, svs, b)
		{
		}

		/* destructor */
		virtual ~CDirectorKernelMachine()
		{

		}

		/** train machine
		 *
		 * @param data training data (parameter can be avoided if distance or
		 * kernel-based classifiers are used and distance/kernels are
		 * initialized with train data).
		 * If flag is set, model features will be stored after training.
		 *
		 * @return whether training was successful
		 */
		virtual bool train(CFeatures* data=NULL)
		{
			return CKernelMachine::train(data);
		}

		virtual bool train_function(CFeatures* data=NULL)
		{
			SG_ERROR("Train function of Director Kernel Machine needs to be overridden.\n")
			return false;
		}

		/** apply machine to data
		 * if data is not specified apply to the current features
		 *
		 * @param data (test)data to be classified
		 * @return classified labels
		 */
		virtual CLabels* apply(CFeatures* data=NULL)
		{
			return CKernelMachine::apply(data);
		}

		/** apply machine to data in means of binary classification problem */
		virtual CBinaryLabels* apply_binary(CFeatures* data=NULL)
		{
			return CKernelMachine::apply_binary(data);
		}

		/** apply machine to data in means of regression problem */
		virtual CRegressionLabels* apply_regression(CFeatures* data=NULL)
		{
			return CKernelMachine::apply_regression(data);
		}

		/** apply machine to data in means of multiclass classification problem */
		using CKernelMachine::apply_multiclass;

		/** apply kernel machine to one example
		 *
		 * @param num which example to apply to
		 * @return classified value
		 */
		virtual float64_t apply_one(int32_t num)
		{
			return CKernelMachine::apply_one(num);
		}

		/** set labels
		 *
		 * @param lab labels
		 */
		virtual void set_labels(CLabels* lab)
		{
			CKernelMachine::set_labels(lab);
		}

		/** get labels
		 *
		 * @return labels
		 */
		virtual CLabels* get_labels()
		{
			return CKernelMachine::get_labels();
		}

		/** get classifier type
		 *
		 * @return classifier type NONE
		 */
		virtual EMachineType get_classifier_type() { return CT_DIRECTORKERNEL; }

		/** Setter for store-model-features-after-training flag
		 *
		 * @param store_model whether model should be stored after
		 * training
		 */
		virtual void set_store_model_features(bool store_model)
		{
			CKernelMachine::set_store_model_features(store_model);
		}

		/** Trains a locked machine on a set of indices. Error if machine is
		 * not locked
		 *
		 * NOT IMPLEMENTED
		 *
		 * @param indices index vector (of locked features) that is used for training
		 * @return whether training was successful
		 */
		virtual bool train_locked(SGVector<index_t> indices)
		{
			return CKernelMachine::train_locked(indices);
		}

		/** Applies a locked machine on a set of indices. Error if machine is
		 * not locked
		 *
		 * @param indices index vector (of locked features) that is predicted
		 */
		virtual CLabels* apply_locked(SGVector<index_t> indices)
		{
			return CKernelMachine::apply_locked(indices);
		}

		virtual CBinaryLabels* apply_locked_binary(SGVector<index_t> indices)
		{
			return CKernelMachine::apply_locked_binary(indices);
		}

		virtual CRegressionLabels* apply_locked_regression(
				SGVector<index_t> indices)
		{
			return CKernelMachine::apply_locked_regression(indices);
		}

		using CKernelMachine::apply_locked_multiclass;

		/** Applies a locked machine on a set of indices. Error if machine is
		 * not locked
		 *
		 * @param indices index vector (of locked features) that is predicted
		 * @return raw output of machine
		 */
		virtual SGVector<float64_t> apply_locked_get_output(
				SGVector<index_t> indices)
		{
			return CKernelMachine::apply_locked_get_output(indices);
		}

		/** Locks the machine on given labels and data. After this call, only
		 * train_locked and apply_locked may be called
		 *
		 * Only possible if supports_locking() returns true
		 *
		 * @param labs labels used for locking
		 * @param features features used for locking
		 */
		virtual void data_lock(CLabels* labs, CFeatures* features)
		{
			CKernelMachine::data_lock(labs, features);
		}

		/** Unlocks a locked machine and restores previous state */
		virtual void data_unlock()
		{
			CKernelMachine::data_unlock();
		}

		/** @return whether this machine supports locking */
		virtual bool supports_locking() const
		{
			return CKernelMachine::supports_locking();
		}

		//TODO change to pure virtual
		virtual EProblemType get_machine_problem_type() const
		{
			return CKernelMachine::get_machine_problem_type();
		}

		virtual const char* get_name() const { return "DirectorKernelMachine"; }

	protected:
		/** train machine
		 *
		 * @param data training data (parameter can be avoided if distance or
		 * kernel-based classifiers are used and distance/kernels are
		 * initialized with train data)
		 *
		 * NOT IMPLEMENTED!
		 *
		 * @return whether training was successful
		 */
		virtual bool train_machine(CFeatures* data=NULL)
		{
			return train_function(data);
		}
};

}

#endif /* USE_SWIG_DIRECTORS */
#endif /* _DIRECTORKERNELMACHINE_H___ */