This file is indexed.

/usr/include/shogun/kernel/string/WeightedDegreeStringKernel.h is in libshogun-dev 3.2.0-7.3build4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 1999-2009 Soeren Sonnenburg
 * Written (W) 1999-2008 Gunnar Raetsch
 * Copyright (C) 1999-2009 Fraunhofer Institute FIRST and Max-Planck-Society
 */

#ifndef _WEIGHTEDDEGREESTRINGKERNEL_H___
#define _WEIGHTEDDEGREESTRINGKERNEL_H___

#include <shogun/lib/common.h>
#include <shogun/lib/Trie.h>
#include <shogun/kernel/string/StringKernel.h>
#include <shogun/transfer/multitask/MultitaskKernelMklNormalizer.h>
#include <shogun/features/StringFeatures.h>

namespace shogun
{

/** WD kernel type */
enum EWDKernType
{
	E_WD=0,
	E_EXTERNAL=1,

	E_BLOCK_CONST=2,
	E_BLOCK_LINEAR=3,
	E_BLOCK_SQPOLY=4,
	E_BLOCK_CUBICPOLY=5,
	E_BLOCK_EXP=6,
	E_BLOCK_LOG=7,
};


/** @brief The Weighted Degree String kernel.
 *
 *  The WD kernel of order d compares two sequences \f${\bf x}\f$ and
 *  \f${\bf x'}\f$ of length L by summing all contributions of k-mer matches of
 *  lengths \f$k\in\{1,\dots,d\}\f$, weighted by coefficients \f$\beta_k\f$. It
 *  is defined as
 *  \f[
 *      k({\bf x},{\bf x'})=\sum_{k=1}^d\beta_k\sum_{l=1}^{L-k+1}I({\bf u}_{k,l}({\bf x})={\bf u}_{k,l}({\bf x'})).
 *  \f]
 *      Here, \f${\bf u}_{k,l}({\bf x})\f$ is the string of length k starting at position
 *      l of the sequence \f${\bf x}\f$ and \f$I(\cdot)\f$ is the indicator function
 *      which evaluates to 1 when its argument is true and to 0
 *      otherwise.
 */
class CWeightedDegreeStringKernel: public CStringKernel<char>
{
	public:

		/** default constructor
		 *
		 */
		CWeightedDegreeStringKernel();


		/** constructor
		 *
		 * @param degree degree
		 * @param type weighted degree kernel type
		 */
		CWeightedDegreeStringKernel(int32_t degree, EWDKernType type=E_WD);

		/** constructor
		 *
		 * @param weights kernel's weights
		 */
		CWeightedDegreeStringKernel(SGVector<float64_t> weights);

		/** constructor
		 *
		 * @param l features of left-hand side
		 * @param r features of right-hand side
		 * @param degree degree
		 */
		CWeightedDegreeStringKernel(
			CStringFeatures<char>* l, CStringFeatures<char>* r, int32_t degree);

		virtual ~CWeightedDegreeStringKernel();

		/** initialize kernel
		 *
		 * @param l features of left-hand side
		 * @param r features of right-hand side
		 * @return if initializing was successful
		 */
		virtual bool init(CFeatures* l, CFeatures* r);

		/** clean up kernel */
		virtual void cleanup();

		/** get WD kernel weighting type
		 *
		 * @return weighting type
		 *
		 *
		 * \sa EWDKernType
		 */
		EWDKernType get_type() const
		{
			return type;
		}

		/** return what type of kernel we are
		 *
		 * @return kernel type WEIGHTEDDEGREE
		 */
		virtual EKernelType get_kernel_type() { return K_WEIGHTEDDEGREE; }

		/** return the kernel's name
		 *
		 * @return name WeightedDegree
		 */
		virtual const char* get_name() const {
			return "WeightedDegreeStringKernel";
		}

		/** initialize optimization
		 *
		 * @param count count
		 * @param IDX index
		 * @param alphas alphas
		 * @return if initializing was successful
		 */
		virtual bool init_optimization(
			int32_t count, int32_t *IDX, float64_t* alphas)
		{
			return init_optimization(count, IDX, alphas, -1);
		}

		/** initialize optimization
		 * do initialization for tree_num up to upto_tree, use
		 * tree_num=-1 to construct all trees
		 *
		 * @param count count
		 * @param IDX IDX
		 * @param alphas alphas
		 * @param tree_num which tree
		 * @return if initializing was successful
		 */
		virtual bool init_optimization(
			int32_t count, int32_t *IDX, float64_t* alphas, int32_t tree_num);

		/** delete optimization
		 *
		 * @return if deleting was successful
		 */
		virtual bool delete_optimization();

		/** compute optimized
		*
		* @param idx index to compute
		* @return optimized value at given index
		*/
		virtual float64_t compute_optimized(int32_t idx)
		{
			if (get_is_initialized())
				return compute_by_tree(idx);

			SG_ERROR("CWeightedDegreeStringKernel optimization not initialized\n")
			return 0;
		}

		/** helper for compute batch
		 *
		 * @param p thread parameter
		 */
		static void* compute_batch_helper(void* p);

		/** compute batch
		 *
		 * @param num_vec number of vectors
		 * @param vec_idx vector index
		 * @param target target
		 * @param num_suppvec number of support vectors
		 * @param IDX IDX
		 * @param alphas alphas
		 * @param factor factor
		 */
		virtual void compute_batch(
			int32_t num_vec, int32_t* vec_idx, float64_t* target,
			int32_t num_suppvec, int32_t* IDX, float64_t* alphas,
			float64_t factor=1.0);

		/** clear normal
		 * subkernel functionality
		 */
		virtual void clear_normal()
		{
			if (get_is_initialized())
			{

				if (normalizer && normalizer->get_normalizer_type()==N_MULTITASK)
					SG_ERROR("not implemented")

				tries->delete_trees(max_mismatch==0);
				set_is_initialized(false);
			}
		}

		/** add to normal
		 *
		 * @param idx where to add
		 * @param weight what to add
		 */
		virtual void add_to_normal(int32_t idx, float64_t weight)
		{

			if (normalizer && normalizer->get_normalizer_type()==N_MULTITASK)
				SG_ERROR("not implemented")

			if (max_mismatch==0)
				add_example_to_tree(idx, weight);
			else
				add_example_to_tree_mismatch(idx, weight);

			set_is_initialized(true);
		}

		/** get number of subkernels
		 *
		 * @return number of subkernels
		 */
		virtual int32_t get_num_subkernels()
		{
			if (normalizer && normalizer->get_normalizer_type()==N_MULTITASK)
				return ((CMultitaskKernelMklNormalizer*)normalizer)->get_num_betas();
			if (position_weights!=NULL)
				return (int32_t) ceil(1.0*seq_length/mkl_stepsize) ;
			if (length==0)
				return (int32_t) ceil(1.0*get_degree()/mkl_stepsize);
			return (int32_t) ceil(1.0*get_degree()*length/mkl_stepsize) ;
		}

		/** compute by subkernel
		 *
		 * @param idx index
		 * @param subkernel_contrib subkernel contribution
		 */
		inline void compute_by_subkernel(
			int32_t idx, float64_t * subkernel_contrib)
		{

			if (get_is_initialized())
			{

				if (normalizer && normalizer->get_normalizer_type()==N_MULTITASK)
					SG_ERROR("not implemented")

				compute_by_tree(idx, subkernel_contrib);
				return ;
			}

			SG_ERROR("CWeightedDegreeStringKernel optimization not initialized\n")
		}

		/** get subkernel weights
		 *
		 * @param num_weights number of weights will be stored here
		 * @return subkernel weights
		 */
		inline const float64_t* get_subkernel_weights(int32_t& num_weights)
		{

			num_weights = get_num_subkernels();

			SG_FREE(weights_buffer);
			weights_buffer = SG_MALLOC(float64_t, num_weights);

			if (normalizer && normalizer->get_normalizer_type()==N_MULTITASK)
				for (int32_t i=0; i<num_weights; i++)
					weights_buffer[i] = ((CMultitaskKernelMklNormalizer*)normalizer)->get_beta(i);
			else if (position_weights!=NULL)
				for (int32_t i=0; i<num_weights; i++)
					weights_buffer[i] = position_weights[i*mkl_stepsize];
			else
				for (int32_t i=0; i<num_weights; i++)
					weights_buffer[i] = weights[i*mkl_stepsize];

			return weights_buffer;
		}

		/** set subkernel weights
		 *
		 * @param w weights
		 */
		virtual void set_subkernel_weights(SGVector<float64_t> w)
		{
			float64_t* weights2=w.vector;
			int32_t num_weights2=w.vlen;
			int32_t num_weights = get_num_subkernels();
			if (num_weights!=num_weights2)
				SG_ERROR("number of weights do not match\n")


			if (normalizer && normalizer->get_normalizer_type()==N_MULTITASK)
				for (int32_t i=0; i<num_weights; i++)
					((CMultitaskKernelMklNormalizer*)normalizer)->set_beta(i, weights2[i]);
			else if (position_weights!=NULL)
			{
				for (int32_t i=0; i<num_weights; i++)
				{
					for (int32_t j=0; j<mkl_stepsize; j++)
					{
						if (i*mkl_stepsize+j<seq_length)
							position_weights[i*mkl_stepsize+j] = weights2[i];
					}
				}
			}
			else if (length==0)
			{
				for (int32_t i=0; i<num_weights; i++)
				{
					for (int32_t j=0; j<mkl_stepsize; j++)
					{
						if (i*mkl_stepsize+j<get_degree())
							weights[i*mkl_stepsize+j] = weights2[i];
					}
				}
			}
			else
			{
				for (int32_t i=0; i<num_weights; i++)
				{
					for (int32_t j=0; j<mkl_stepsize; j++)
					{
						if (i*mkl_stepsize+j<get_degree()*length)
							weights[i*mkl_stepsize+j] = weights2[i];
					}
				}
			}
		}

		/** set the current kernel normalizer
		 *
		 * @return if successful
		 */
		virtual bool set_normalizer(CKernelNormalizer* normalizer_) {

			if (normalizer_ && strcmp(normalizer_->get_name(),"MultitaskKernelTreeNormalizer")==0) {
				unset_property(KP_LINADD);
				unset_property(KP_BATCHEVALUATION);
			}
			else
			{
				set_property(KP_LINADD);
				set_property(KP_BATCHEVALUATION);
			}


			return CStringKernel<char>::set_normalizer(normalizer_);

		}

		// other kernel tree operations
		/** compute abs weights
		 *
		 * @param len len
		 * @return computed abs weights
		 */
		float64_t *compute_abs_weights(int32_t & len);

		/** compute by tree
		 *
		 * @param idx index
		 * @param LevelContrib level contribution
		 * @return computed value
		 */
		void compute_by_tree(int32_t idx, float64_t *LevelContrib);

		/** check if tree is initialized
		 *
		 * @return if tree is initialized
		 */
		bool is_tree_initialized() { return tree_initialized; }

		/** get degree weights
		 *
		 * @param d degree weights will be stored here
		 * @param len number of degree weights will be stored here
		 */
		inline float64_t *get_degree_weights(int32_t& d, int32_t& len)
		{
			d=degree;
			len=length;
			return weights;
		}

		/** get weights
		 *
		 * @param num_weights number of weights will be stored here
		 * @return weights
		 */
		inline float64_t *get_weights(int32_t& num_weights)
		{

			if (normalizer && normalizer->get_normalizer_type()==N_MULTITASK)
				SG_ERROR("not implemented")

			if (position_weights!=NULL)
			{
				num_weights = seq_length ;
				return position_weights ;
			}
			if (length==0)
				num_weights = degree ;
			else
				num_weights = degree*length ;
			return weights;
		}

		/** get position weights
		 *
		 * @param len number of position weights will be stored here
		 * @return position weights
		 */
		inline float64_t *get_position_weights(int32_t& len)
		{
			len=seq_length;
			return position_weights;
		}

		/** set wd weights
		 *
		 * @param type weighted degree kernel type
		 * @return if setting was successful
		 */
		bool set_wd_weights_by_type(EWDKernType type);

		/** set wd weights
		 *
		 * @param new_weights new weights
		 */
		inline void set_wd_weights(SGVector<float64_t> new_weights)
		{
			SGMatrix<float64_t> matrix = SGMatrix<float64_t>(new_weights.vector,new_weights.vlen,0);
			set_weights(matrix);
			matrix.matrix = NULL;
		}

		/** set weights
		 *
		 * @param new_weights new weights
		 */
		bool set_weights(SGMatrix<float64_t> new_weights);

		/** set position weights
		 *
		 * @param pws new position weights
		 * @param len number of position weights
		 * @return if setting was successful
		 */
		bool set_position_weights(float64_t* pws, int32_t len);

		/** initialize block weights
		 *
		 * @return if initialization was successful
		 */
		bool init_block_weights();

		/** initialize block weights from weighted degree
		 *
		 * @return if initialization was successful
		 */
		bool init_block_weights_from_wd();

		/** initialize block weights from external weighted degree
		 *
		 * @return if initialization was successful
		 */
		bool init_block_weights_from_wd_external();

		/** initialize block weights constant
		 *
		 * @return if initialization was successful
		 */
		bool init_block_weights_const();

		/** initialize block weights linear
		 *
		 * @return if initialization was successful
		 */
		bool init_block_weights_linear();

		/** initialize block weights squared polynomial
		 *
		 * @return if initialization was successful
		 */
		bool init_block_weights_sqpoly();

		/** initialize block weights cubic polynomial
		 *
		 * @return if initialization was successful
		 */
		bool init_block_weights_cubicpoly();

		/** initialize block weights exponential
		 *
		 * @return if initialization was successful
		 */
		bool init_block_weights_exp();

		/** initialize block weights logarithmic
		 *
		 * @return if initialization was successful
		 */
		bool init_block_weights_log();

		/** delete position weights
		 *
		 * @return if deleting was successful
		 */
		bool delete_position_weights()
		{
			SG_FREE(position_weights);
			position_weights=NULL;
			return true;
		}

		/** set maximum mismatch
		 *
		 * @param max new maximum mismatch
		 * @return if setting was successful
		 */
		bool set_max_mismatch(int32_t max);

		/** get maximum mismatch
		 *
		 * @return maximum mismatch
		 */
		inline int32_t get_max_mismatch() const { return max_mismatch; }

		/** set degree
		 *
		 * @param deg new degree
		 * @return if setting was successful
		 */
		inline bool set_degree(int32_t deg) { degree=deg; return true; }

		/** get degree
		 *
		 * @return degree
		 */
		inline int32_t get_degree() const { return degree; }

		/** set if block computation shall be performed
		 *
		 * @param block if block computation shall be performed
		 * @return if setting was successful
		 */
		inline bool set_use_block_computation(bool block)
		{
			block_computation=block;
			return true;
		}

		/** check if block computation is performed
		 *
		 * @return if block computation is performed
		 */
		inline bool get_use_block_computation() { return block_computation; }

		/** set MKL steps ize
		 *
		 * @param step new step size
		 * @return if setting was successful
		 */
		inline bool set_mkl_stepsize(int32_t step)
		{
			if (step<1)
				SG_ERROR("Stepsize must be a positive integer\n")
			mkl_stepsize=step;
			return true;
		}

		/** get MKL step size
		 *
		 * @return MKL step size
		 */
		inline int32_t get_mkl_stepsize() { return mkl_stepsize; }

		/** set which degree
		 *
		 * @param which which degree
		 * @return if setting was successful
		 */
		inline bool set_which_degree(int32_t which)
		{
			which_degree=which;
			return true;
		}

		/** get which degree
		 *
		 * @return which degree
		 */
		inline int32_t get_which_degree() { return which_degree; }

	protected:
		/** create emtpy tries */
		void create_empty_tries();

		/** add example to tree
		 *
		 * @param idx index
		 * @param weight weight
		 */
		void add_example_to_tree(int32_t idx, float64_t weight);

		/** add example to single tree
		 *
		 * @param idx index
		 * @param weight weight
		 * @param tree_num which tree
		 */
		void add_example_to_single_tree(
			int32_t idx, float64_t weight, int32_t tree_num);

		/** add example to tree mismatch
		 *
		 * @param idx index
		 * @param weight weight
		 */
		void add_example_to_tree_mismatch(int32_t idx, float64_t weight);

		/** add example to single tree mismatch
		 *
		 * @param idx index
		 * @param weight weight
		 * @param tree_num which tree
		 */
		void add_example_to_single_tree_mismatch(
			int32_t idx, float64_t weight, int32_t tree_num);

		/** compute by tree
		 *
		 * @param idx index
		 * @return computed value
		 */
		float64_t compute_by_tree(int32_t idx);

		/** compute kernel function for features a and b
		 * idx_{a,b} denote the index of the feature vectors
		 * in the corresponding feature object
		 *
		 * @param idx_a index a
		 * @param idx_b index b
		 * @return computed kernel function at indices a,b
		 */
		float64_t compute(int32_t idx_a, int32_t idx_b);

		/** compute with mismatch
		 *
		 * @param avec vector a
		 * @param alen length of vector a
		 * @param bvec vector b
		 * @param blen length of vector b
		 * @return computed value
		 */
		float64_t compute_with_mismatch(
			char* avec, int32_t alen, char* bvec, int32_t blen);

		/** compute without mismatch
		 *
		 * @param avec vector a
		 * @param alen length of vector a
		 * @param bvec vector b
		 * @param blen length of vector b
		 * @return computed value
		 */
		float64_t compute_without_mismatch(
			char* avec, int32_t alen, char* bvec, int32_t blen);

		/** compute without mismatch matrix
		 *
		 * @param avec vector a
		 * @param alen length of vector a
		 * @param bvec vector b
		 * @param blen length of vector b
		 * @return computed value
		 */
		float64_t compute_without_mismatch_matrix(
			char* avec, int32_t alen, char* bvec, int32_t blen);

		/** compute using block
		 *
		 * @param avec vector a
		 * @param alen length of vector a
		 * @param bvec vector b
		 * @param blen length of vector b
		 * @return computed value
		 */
		float64_t compute_using_block(char* avec, int32_t alen,
			char* bvec, int32_t blen);

		/** remove lhs from kernel */
		virtual void remove_lhs();

	private:
		/** Do basic initialisations like default settings
		 * and registering parameters */
		void init();

	protected:
		/** degree*length weights
		 *length must match seq_length if != 0
		 */
		float64_t* weights;
		/** degree */
		int32_t weights_degree;
		/** length */
		int32_t weights_length;


		/** position weights */
		float64_t* position_weights;
		/** position weights */
		int32_t position_weights_len;
		/** weights buffer */
		float64_t* weights_buffer;
		/** MKL step size */
		int32_t mkl_stepsize;
		/** degree */
		int32_t degree;
		/** length */
		int32_t length;

		/** maximum mismatch */
		int32_t max_mismatch;
		/** sequence length */
		int32_t seq_length;

		/** if kernel is initialized */
		bool initialized;

		/** if block computation is used */
		bool block_computation;

		/** (internal) block weights */
		float64_t* block_weights;
		/** WeightedDegree kernel type */
		EWDKernType type;
		/** which degree */
		int32_t which_degree;

		/** tries */
		CTrie<DNATrie>* tries;

		/** if tree is initialized */
		bool tree_initialized;

		/** alphabet of features */
		CAlphabet* alphabet;
};

}

#endif /* _WEIGHTEDDEGREESTRINGKERNEL_H__ */