/usr/include/shogun/features/HashedDocDotFeatures.h is in libshogun-dev 3.2.0-7.3build4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 2013 Evangelos Anagnostopoulos
* Copyright (C) 2013 Evangelos Anagnostopoulos
*/
#ifndef _HASHEDDOCDOTFEATURES__H__
#define _HASHEDDOCDOTFEATURES__H__
#include <shogun/features/DotFeatures.h>
#include <shogun/features/StringFeatures.h>
#include <shogun/converter/HashedDocConverter.h>
#include <shogun/lib/Tokenizer.h>
namespace shogun {
template<class ST> class CStringFeatures;
template<class ST> class SGMatrix;
class CDotFeatures;
class CHashedDocConverter;
class CTokenizer;
/** @brief This class can be used to provide on-the-fly vectorization of a document collection.
* Like in the standard Bag-of-Words representation, this class considers each document as a collection of tokens,
* which are then hashed into a new feature space of a specified dimension.
* This class is very flexible and allows the user to specify the tokenizer used to tokenize each document,
* specify whether the results should be normalized with regards to the sqrt of the document size, as well
* as to specify whether he wants to combine different tokens.
* The latter implements a k-skip n-grams approach, meaning that you can combine up to n tokens, while skipping up to k.
* Eg. for the tokens ["a", "b", "c", "d"], with n_grams = 2 and skips = 2, one would get the following combinations :
* ["a", "ab", "ac" (skipped 1), "ad" (skipped 2), "b", "bc", "bd" (skipped 1), "c", "cd", "d"].
*/
class CHashedDocDotFeatures: public CDotFeatures
{
public:
/** constructor
*
* @param hash_bits the number of bits of the hash. Means a dimension of size 2^(hash_bits).
* @param docs the document collection
* @param tzer the tokenizer to use on the documents
* @param normalize whether or not to normalize the result of the dot products
* @param n_grams max number of consecutive tokens to hash together (extra features)
* @param skips max number of tokens to skip when combining tokens
* @param size cache size
*/
CHashedDocDotFeatures(int32_t hash_bits=0, CStringFeatures<char>* docs=NULL,
CTokenizer* tzer=NULL, bool normalize=true, int32_t n_grams=1, int32_t skips=0, int32_t size=0);
/** copy constructor */
CHashedDocDotFeatures(const CHashedDocDotFeatures& orig);
/** constructor
*
* @param loader File object via which to load data
*/
CHashedDocDotFeatures(CFile* loader);
/** destructor */
virtual ~CHashedDocDotFeatures();
/** obtain the dimensionality of the feature space
*
* (not mix this up with the dimensionality of the input space, usually
* obtained via get_num_features())
*
* @return dimensionality
*/
virtual int32_t get_dim_feature_space() const;
/** compute dot product between vector1 and vector2,
* appointed by their indices
*
* @param vec_idx1 index of first vector
* @param df DotFeatures (of same kind) to compute dot product with
* @param vec_idx2 index of second vector
*/
virtual float64_t dot(int32_t vec_idx1, CDotFeatures* df, int32_t vec_idx2);
/** compute dot product between vector1 and a dense vector
*
* @param vec_idx1 index of first vector
* @param vec2 dense vector
*/
virtual float64_t dense_dot_sgvec(int32_t vec_idx1, const SGVector<float64_t> vec2);
/** compute dot product between vector1 and a dense vector
*
* @param vec_idx1 index of first vector
* @param vec2 pointer to real valued vector
* @param vec2_len length of real valued vector
*/
virtual float64_t dense_dot(int32_t vec_idx1, const float64_t* vec2, int32_t vec2_len);
/** add vector 1 multiplied with alpha to dense vector2
*
* @param alpha scalar alpha
* @param vec_idx1 index of first vector
* @param vec2 pointer to real valued vector
* @param vec2_len length of real valued vector
* @param abs_val if true add the absolute value
*/
virtual void add_to_dense_vec(float64_t alpha, int32_t vec_idx1, float64_t* vec2, int32_t vec2_len, bool abs_val=false);
/** get number of non-zero features in vector
*
* (in case accurate estimates are too expensive overestimating is OK)
*
* @param num which vector
* @return number of sparse features in vector
*/
virtual int32_t get_nnz_features_for_vector(int32_t num);
/** iterate over the non-zero features
*
* call get_feature_iterator first, followed by get_next_feature and
* free_feature_iterator to cleanup
* NOT IMPLEMENTED
*
* @param vector_index the index of the vector over whose components to
* iterate over
* @return feature iterator (to be passed to get_next_feature)
*/
virtual void* get_feature_iterator(int32_t vector_index);
/** iterate over the non-zero features
* NOT IMPLEMENTED
*
* call this function with the iterator returned by get_feature_iterator
* and call free_feature_iterator to cleanup
*
* @param index is returned by reference (-1 when not available)
* @param value is returned by reference
* @param iterator as returned by get_feature_iterator
* @return true if a new non-zero feature got returned
*/
virtual bool get_next_feature(int32_t& index, float64_t& value, void* iterator);
/** clean up iterator
* call this function with the iterator returned by get_feature_iterator
* NOT IMPLEMENTED
*
* @param iterator as returned by get_feature_iterator
*/
virtual void free_feature_iterator(void* iterator);
/** set the document collection to work on
*
* @param docs the document collection
*/
void set_doc_collection(CStringFeatures<char>* docs);
virtual const char* get_name() const;
/** duplicate feature object
*
* @return feature object
*/
virtual CFeatures* duplicate() const;
/** get feature type
*
* @return templated feature type
*/
virtual EFeatureType get_feature_type() const;
/** get feature class
*
* @return feature class DENSE
*/
virtual EFeatureClass get_feature_class() const;
/** get number of feature vectors
*
* @return number of feature vectors
*/
virtual int32_t get_num_vectors() const;
/** Helper method to calculate the murmur hash of a
* token and restrict it to a specified dimension range.
*
* @param token pointer to the token
* @param length the length of the token
* @param num_bits the number of bits to maintain in the hash
* @param seed a seed for the hash
*/
static uint32_t calculate_token_hash(char* token, int32_t length,
int32_t num_bits, uint32_t seed);
private:
void init(int32_t hash_bits, CStringFeatures<char>* docs, CTokenizer* tzer,
bool normalize, int32_t n_grams, int32_t skips);
protected:
/** the document collection*/
CStringFeatures<char>* doc_collection;
/** number of bits of hash */
int32_t num_bits;
/** tokenizer */
CTokenizer* tokenizer;
/** if should normalize the dot product results */
bool should_normalize;
/** n for ngrams for quadratic features */
int32_t ngrams;
/** tokens to skip when combining tokens */
int32_t tokens_to_skip;
};
}
#endif
|