/usr/include/shogun/distributions/HMM.h is in libshogun-dev 3.2.0-7.3build4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 1999-2009 Soeren Sonnenburg
* Written (W) 1999-2008 Gunnar Raetsch
* Copyright (C) 1999-2009 Fraunhofer Institute FIRST and Max-Planck-Society
*/
#ifndef __CHMM_H__
#define __CHMM_H__
#include <shogun/mathematics/Math.h>
#include <shogun/lib/common.h>
#include <shogun/io/SGIO.h>
#include <shogun/lib/config.h>
#include <shogun/features/Features.h>
#include <shogun/features/StringFeatures.h>
#include <shogun/distributions/Distribution.h>
#include <stdio.h>
#ifdef USE_HMMPARALLEL
#define USE_HMMPARALLEL_STRUCTURES 1
#endif
namespace shogun
{
class CFeatures;
template <class ST> class CStringFeatures;
/**@name HMM specific types*/
//@{
/// type for alpha/beta caching table
typedef float64_t T_ALPHA_BETA_TABLE;
#ifndef DOXYGEN_SHOULD_SKIP_THIS
/// type for alpha/beta table
struct T_ALPHA_BETA
{
/// dimension for that alpha/beta table was generated
int32_t dimension;
/// perversely huge alpha/beta cache table
T_ALPHA_BETA_TABLE* table;
/// true if table is valid
bool updated;
/// sum over all paths == model_probability for this dimension
float64_t sum;
};
#endif // DOXYGEN_SHOULD_SKIP_THIS
/** type that is used for states.
* Probably uint8_t is enough if you have at most 256 states,
* however uint16_t/long/... is also possible although you might quickly run into memory problems
*/
#ifdef USE_BIGSTATES
typedef uint16_t T_STATES ;
#else
typedef uint8_t T_STATES ;
#endif
typedef T_STATES* P_STATES ;
//@}
/** Training type */
enum BaumWelchViterbiType
{
/// standard baum welch
BW_NORMAL,
/// baum welch only for specified transitions
BW_TRANS,
/// baum welch only for defined transitions/observations
BW_DEFINED,
/// standard viterbi
VIT_NORMAL,
/// viterbi only for defined transitions/observations
VIT_DEFINED
};
/** @brief class Model */
class Model
{
public:
/// Constructor - initializes all variables/structures
Model();
/// Destructor - cleans up
virtual ~Model();
/// sorts learn_a matrix
inline void sort_learn_a()
{
CMath::sort(learn_a,2) ;
}
/// sorts learn_b matrix
inline void sort_learn_b()
{
CMath::sort(learn_b,2) ;
}
/**@name read access functions.
* For learn arrays and const arrays
*/
//@{
/// get entry out of learn_a matrix
inline int32_t get_learn_a(int32_t line, int32_t column) const
{
return learn_a[line*2 + column];
}
/// get entry out of learn_b matrix
inline int32_t get_learn_b(int32_t line, int32_t column) const
{
return learn_b[line*2 + column];
}
/// get entry out of learn_p vector
inline int32_t get_learn_p(int32_t offset) const
{
return learn_p[offset];
}
/// get entry out of learn_q vector
inline int32_t get_learn_q(int32_t offset) const
{
return learn_q[offset];
}
/// get entry out of const_a matrix
inline int32_t get_const_a(int32_t line, int32_t column) const
{
return const_a[line*2 + column];
}
/// get entry out of const_b matrix
inline int32_t get_const_b(int32_t line, int32_t column) const
{
return const_b[line*2 + column];
}
/// get entry out of const_p vector
inline int32_t get_const_p(int32_t offset) const
{
return const_p[offset];
}
/// get entry out of const_q vector
inline int32_t get_const_q(int32_t offset) const
{
return const_q[offset];
}
/// get value out of const_a_val vector
inline float64_t get_const_a_val(int32_t line) const
{
return const_a_val[line];
}
/// get value out of const_b_val vector
inline float64_t get_const_b_val(int32_t line) const
{
return const_b_val[line];
}
/// get value out of const_p_val vector
inline float64_t get_const_p_val(int32_t offset) const
{
return const_p_val[offset];
}
/// get value out of const_q_val vector
inline float64_t get_const_q_val(int32_t offset) const
{
return const_q_val[offset];
}
#ifdef FIX_POS
/// get value out of fix_pos_state array
inline char get_fix_pos_state(int32_t pos, T_STATES state, T_STATES num_states)
{
#ifdef HMM_DEBUG
if ((pos<0)||(pos*num_states+state>65336))
SG_DEBUG("index out of range in get_fix_pos_state(%i,%i,%i) \n", pos,state,num_states)
#endif
return fix_pos_state[pos*num_states+state] ;
}
#endif
//@}
/**@name write access functions
* For learn and const arrays
*/
//@{
/// set value in learn_a matrix
inline void set_learn_a(int32_t offset, int32_t value)
{
learn_a[offset]=value;
}
/// set value in learn_b matrix
inline void set_learn_b(int32_t offset, int32_t value)
{
learn_b[offset]=value;
}
/// set value in learn_p vector
inline void set_learn_p(int32_t offset, int32_t value)
{
learn_p[offset]=value;
}
/// set value in learn_q vector
inline void set_learn_q(int32_t offset, int32_t value)
{
learn_q[offset]=value;
}
/// set value in const_a matrix
inline void set_const_a(int32_t offset, int32_t value)
{
const_a[offset]=value;
}
/// set value in const_b matrix
inline void set_const_b(int32_t offset, int32_t value)
{
const_b[offset]=value;
}
/// set value in const_p vector
inline void set_const_p(int32_t offset, int32_t value)
{
const_p[offset]=value;
}
/// set value in const_q vector
inline void set_const_q(int32_t offset, int32_t value)
{
const_q[offset]=value;
}
/// set value in const_a_val vector
inline void set_const_a_val(int32_t offset, float64_t value)
{
const_a_val[offset]=value;
}
/// set value in const_b_val vector
inline void set_const_b_val(int32_t offset, float64_t value)
{
const_b_val[offset]=value;
}
/// set value in const_p_val vector
inline void set_const_p_val(int32_t offset, float64_t value)
{
const_p_val[offset]=value;
}
/// set value in const_q_val vector
inline void set_const_q_val(int32_t offset, float64_t value)
{
const_q_val[offset]=value;
}
#ifdef FIX_POS
/// set value in fix_pos_state vector
inline void set_fix_pos_state(
int32_t pos, T_STATES state, T_STATES num_states, char value)
{
#ifdef HMM_DEBUG
if ((pos<0)||(pos*num_states+state>65336))
SG_DEBUG("index out of range in set_fix_pos_state(%i,%i,%i,%i) [%i]\n", pos,state,num_states,(int)value, pos*num_states+state)
#endif
fix_pos_state[pos*num_states+state]=value;
if (value==FIX_ALLOWED)
for (int32_t i=0; i<num_states; i++)
if (get_fix_pos_state(pos,i,num_states)==FIX_DEFAULT)
set_fix_pos_state(pos,i,num_states,FIX_DISALLOWED) ;
}
//@}
/// FIX_DISALLOWED - state is forbidden and will be penalized with DISALLOWED_PENALTY
const static char FIX_DISALLOWED ;
/// FIX_ALLOWED - state is allowed
const static char FIX_ALLOWED ;
/// FIX_DEFAULT - default value
const static char FIX_DEFAULT ;
/// DISALLOWED_PENALTY - states in FIX_DISALLOWED will be penalized with this value
const static float64_t DISALLOWED_PENALTY ;
#endif
protected:
/**@name learn arrays.
* Everything that is to be learned is enumerated here.
* All values will be inititialized with random values
* and normalized to satisfy stochasticity.
*/
//@{
/// transitions to be learned
int32_t* learn_a;
/// emissions to be learned
int32_t* learn_b;
/// start states to be learned
int32_t* learn_p;
/// end states to be learned
int32_t* learn_q;
//@}
/**@name constant arrays.
* These arrays hold constant fields. All values that
* are not constant and will not be learned are initialized
* with 0.
*/
//@{
/// transitions that have constant probability
int32_t* const_a;
/// emissions that have constant probability
int32_t* const_b;
/// start states that have constant probability
int32_t* const_p;
/// end states that have constant probability
int32_t* const_q;
/// values for transitions that have constant probability
float64_t* const_a_val;
/// values for emissions that have constant probability
float64_t* const_b_val;
/// values for start states that have constant probability
float64_t* const_p_val;
/// values for end states that have constant probability
float64_t* const_q_val;
#ifdef FIX_POS
/** states in whose the model has to be at specific times/states which the model has to avoid.
* only used in viterbi
*/
char* fix_pos_state;
#endif
//@}
};
/** @brief Hidden Markov Model.
*
* Structure and Function collection.
* This Class implements a Hidden Markov Model.
* For a tutorial on HMMs see Rabiner et.al A Tutorial on Hidden Markov Models
* and Selected Applications in Speech Recognition, 1989
*
* Several functions for tasks such as training,reading/writing models, reading observations,
* calculation of derivatives are supplied.
*/
class CHMM : public CDistribution
{
private:
T_STATES trans_list_len ;
T_STATES **trans_list_forward ;
T_STATES *trans_list_forward_cnt ;
float64_t **trans_list_forward_val ;
T_STATES **trans_list_backward ;
T_STATES *trans_list_backward_cnt ;
bool mem_initialized ;
#ifdef USE_HMMPARALLEL_STRUCTURES
/// Datatype that is used in parrallel computation of viterbi
struct S_DIM_THREAD_PARAM
{
CHMM* hmm;
int32_t dim;
float64_t prob_sum;
};
/// Datatype that is used in parrallel baum welch model estimation
struct S_BW_THREAD_PARAM
{
CHMM* hmm;
int32_t dim_start;
int32_t dim_stop;
float64_t ret;
float64_t* p_buf;
float64_t* q_buf;
float64_t* a_buf;
float64_t* b_buf;
};
inline T_ALPHA_BETA & ALPHA_CACHE(int32_t dim) {
return alpha_cache[dim%parallel->get_num_threads()] ; } ;
inline T_ALPHA_BETA & BETA_CACHE(int32_t dim) {
return beta_cache[dim%parallel->get_num_threads()] ; } ;
#ifdef USE_LOGSUMARRAY
inline float64_t* ARRAYS(int32_t dim) {
return arrayS[dim%parallel->get_num_threads()] ; } ;
#endif
inline float64_t* ARRAYN1(int32_t dim) {
return arrayN1[dim%parallel->get_num_threads()] ; } ;
inline float64_t* ARRAYN2(int32_t dim) {
return arrayN2[dim%parallel->get_num_threads()] ; } ;
inline T_STATES* STATES_PER_OBSERVATION_PSI(int32_t dim) {
return states_per_observation_psi[dim%parallel->get_num_threads()] ; } ;
inline const T_STATES* STATES_PER_OBSERVATION_PSI(int32_t dim) const {
return states_per_observation_psi[dim%parallel->get_num_threads()] ; } ;
inline T_STATES* PATH(int32_t dim) {
return path[dim%parallel->get_num_threads()] ; } ;
inline bool & PATH_PROB_UPDATED(int32_t dim) {
return path_prob_updated[dim%parallel->get_num_threads()] ; } ;
inline int32_t & PATH_PROB_DIMENSION(int32_t dim) {
return path_prob_dimension[dim%parallel->get_num_threads()] ; } ;
#else
inline T_ALPHA_BETA & ALPHA_CACHE(int32_t /*dim*/) {
return alpha_cache ; } ;
inline T_ALPHA_BETA & BETA_CACHE(int32_t /*dim*/) {
return beta_cache ; } ;
#ifdef USE_LOGSUMARRAY
inline float64_t* ARRAYS(int32_t dim) {
return arrayS ; } ;
#endif
inline float64_t* ARRAYN1(int32_t /*dim*/) {
return arrayN1 ; } ;
inline float64_t* ARRAYN2(int32_t /*dim*/) {
return arrayN2 ; } ;
inline T_STATES* STATES_PER_OBSERVATION_PSI(int32_t /*dim*/) {
return states_per_observation_psi ; } ;
inline const T_STATES* STATES_PER_OBSERVATION_PSI(int32_t /*dim*/) const {
return states_per_observation_psi ; } ;
inline T_STATES* PATH(int32_t /*dim*/) {
return path ; } ;
inline bool & PATH_PROB_UPDATED(int32_t /*dim*/) {
return path_prob_updated ; } ;
inline int32_t & PATH_PROB_DIMENSION(int32_t /*dim*/) {
return path_prob_dimension ; } ;
#endif
/** Determines if algorithm has converged
* @param x value to check against y
* @param y value to check against x
*/
bool converged(float64_t x, float64_t y);
/** Train definitions.
* Encapsulates Modelparameters that are constant/shall be learned.
* Consists of structures and access functions for learning only defined transitions and constants.
*/
public:
/** default constructor */
CHMM();
/**@name Constructor/Destructor and helper function
*/
//@{
/** Constructor
* @param N number of states
* @param M number of emissions
* @param model model which holds definitions of states to be learned + consts
* @param PSEUDO Pseudo Value
*/
CHMM(
int32_t N, int32_t M, Model* model, float64_t PSEUDO);
CHMM(
CStringFeatures<uint16_t>* obs, int32_t N, int32_t M,
float64_t PSEUDO);
CHMM(
int32_t N, float64_t* p, float64_t* q, float64_t* a);
CHMM(
int32_t N, float64_t* p, float64_t* q, int32_t num_trans,
float64_t* a_trans);
/** Constructor - Initialization from model file.
* @param model_file Filehandle to a hmm model file (*.mod)
* @param PSEUDO Pseudo Value
*/
CHMM(FILE* model_file, float64_t PSEUDO);
/// Constructor - Clone model h
CHMM(CHMM* h);
/// Destructor - Cleanup
virtual ~CHMM();
/** learn distribution
*
* @param data training data (parameter can be avoided if distance or
* kernel-based classifiers are used and distance/kernels are
* initialized with train data)
*
* @return whether training was successful
*/
virtual bool train(CFeatures* data=NULL);
virtual int32_t get_num_model_parameters() { return N*(N+M+2); }
virtual float64_t get_log_model_parameter(int32_t num_param);
virtual float64_t get_log_derivative(int32_t num_param, int32_t num_example);
virtual float64_t get_log_likelihood_example(int32_t num_example)
{
return model_probability(num_example);
}
/** initialization function - gets called by constructors.
* @param model model which holds definitions of states to be learned + consts
* @param PSEUDO Pseudo Value
* @param model_file Filehandle to a hmm model file (*.mod)
*/
bool initialize(Model* model, float64_t PSEUDO, FILE* model_file=NULL);
//@}
/// allocates memory that depends on N
bool alloc_state_dependend_arrays();
/// free memory that depends on N
void free_state_dependend_arrays();
/**@name probability functions.
* forward/backward/viterbi algorithm
*/
//@{
/** forward algorithm.
* calculates Pr[O_0,O_1, ..., O_t, q_time=S_i| lambda] for 0<= time <= T-1
* Pr[O|lambda] for time > T
* @param time t
* @param state i
* @param dimension dimension of observation (observations are a matrix, where a row stands for one dimension i.e. 0_0,O_1,...,O_{T-1}
*/
float64_t forward_comp(int32_t time, int32_t state, int32_t dimension);
float64_t forward_comp_old(
int32_t time, int32_t state, int32_t dimension);
/** backward algorithm.
* calculates Pr[O_t+1,O_t+2, ..., O_T-1| q_time=S_i, lambda] for 0<= time <= T-1
* Pr[O|lambda] for time >= T
* @param time t
* @param state i
* @param dimension dimension of observation (observations are a matrix, where a row stands for one dimension i.e. 0_0,O_1,...,O_{T-1}
*/
float64_t backward_comp(int32_t time, int32_t state, int32_t dimension);
float64_t backward_comp_old(
int32_t time, int32_t state, int32_t dimension);
/** calculates probability of best state sequence s_0,...,s_T-1 AND path itself using viterbi algorithm.
* The path can be found in the array PATH(dimension)[0..T-1] afterwards
* @param dimension dimension of observation for which the most probable path is calculated (observations are a matrix, where a row stands for one dimension i.e. 0_0,O_1,...,O_{T-1}
*/
float64_t best_path(int32_t dimension);
inline uint16_t get_best_path_state(int32_t dim, int32_t t)
{
ASSERT(PATH(dim))
return PATH(dim)[t];
}
/// calculates probability that observations were generated
/// by the model using forward algorithm.
float64_t model_probability_comp() ;
/// inline proxy for model probability.
inline float64_t model_probability(int32_t dimension=-1)
{
//for faster calculation cache model probability
if (dimension==-1)
{
if (mod_prob_updated)
return mod_prob/p_observations->get_num_vectors();
else
return model_probability_comp()/p_observations->get_num_vectors();
}
else
return forward(p_observations->get_vector_length(dimension), 0, dimension);
}
/** calculates likelihood for linear model
* on observations in MEMORY
* @param dimension dimension for which probability is calculated
* @return model probability
*/
inline float64_t linear_model_probability(int32_t dimension)
{
float64_t lik=0;
int32_t len=0;
bool free_vec;
uint16_t* o=p_observations->get_feature_vector(dimension, len, free_vec);
float64_t* obs_b=observation_matrix_b;
ASSERT(N==len)
for (int32_t i=0; i<N; i++)
{
lik+=obs_b[*o++];
obs_b+=M;
}
p_observations->free_feature_vector(o, dimension, free_vec);
return lik;
// sorry, the above code is the speed optimized version of :
/* float64_t lik=0;
for (int32_t i=0; i<N; i++)
lik+=get_b(i, p_observations->get_feature(dimension, i));
return lik;
*/
// : that
}
//@}
/**@name convergence criteria
*/
inline bool set_iterations(int32_t num) { iterations=num; return true; }
inline int32_t get_iterations() { return iterations; }
inline bool set_epsilon (float64_t eps) { epsilon=eps; return true; }
inline float64_t get_epsilon() { return epsilon; }
/** interface for e.g. GUIHMM to run BaumWelch or Viterbi training
* @param type type of BaumWelch/Viterbi training
*/
bool baum_welch_viterbi_train(BaumWelchViterbiType type);
/**@name model training
*/
//@{
/** uses baum-welch-algorithm to train a fully connected HMM.
* @param train model from which the new model is estimated
*/
void estimate_model_baum_welch(CHMM* train);
void estimate_model_baum_welch_trans(CHMM* train);
#ifdef USE_HMMPARALLEL_STRUCTURES
void ab_buf_comp(
float64_t* p_buf, float64_t* q_buf, float64_t* a_buf,
float64_t* b_buf, int32_t dim) ;
#else
void estimate_model_baum_welch_old(CHMM* train);
#endif
/** uses baum-welch-algorithm to train the defined transitions etc.
* @param train model from which the new model is estimated
*/
void estimate_model_baum_welch_defined(CHMM* train);
/** uses viterbi training to train a fully connected HMM
* @param train model from which the new model is estimated
*/
void estimate_model_viterbi(CHMM* train);
/** uses viterbi training to train the defined transitions etc.
* @param train model from which the new model is estimated
*/
void estimate_model_viterbi_defined(CHMM* train);
//@}
/// estimates linear model from observations.
bool linear_train(bool right_align=false);
/// compute permutation entropy
bool permutation_entropy(int32_t window_width, int32_t sequence_number);
/**@name output functions.*/
//@{
/** prints the model parameters on screen.
* @param verbose when false only the model probability will be printed
* when true the whole model will be printed additionally
*/
void output_model(bool verbose=false);
/// performs output_model only for the defined transitions etc
void output_model_defined(bool verbose=false);
//@}
/**@name model helper functions.*/
//@{
/// normalize the model to satisfy stochasticity
void normalize(bool keep_dead_states=false);
/// increases the number of states by num_states
/// the new a/b/p/q values are given the value default_val
/// where 0<=default_val<=1
void add_states(int32_t num_states, float64_t default_val=0);
/// appends the append_model to the current hmm, i.e.
/// two extra states are created. one is the end state of
/// the current hmm with outputs cur_out (of size M) and
/// the other state is the start state of the append_model.
/// transition probability from state 1 to states 1 is 1
bool append_model(
CHMM* append_model, float64_t* cur_out, float64_t* app_out);
/// appends the append_model to the current hmm, here
/// no extra states are created. former q_i are multiplied by q_ji
/// to give the a_ij from the current hmm to the append_model
bool append_model(CHMM* append_model);
/// set any model parameter with probability smaller than value to ZERO
void chop(float64_t value);
/// convert model to log probabilities
void convert_to_log();
/// init model with random values
void init_model_random();
/** init model according to const_x, learn_x.
* first model is initialized with 0 for all parameters
* then parameters in learn_x are initialized with random values
* finally const_x parameters are set and model is normalized.
*/
void init_model_defined();
/// initializes model with log(PSEUDO)
void clear_model();
/// initializes only parameters in learn_x with log(PSEUDO)
void clear_model_defined();
/// copies the the modelparameters from l
void copy_model(CHMM* l);
/** invalidates all caches.
* this function has to be called when direct changes to the model have been made.
* this is necessary for the forward/backward/viterbi algorithms to not work with old tables
*/
void invalidate_model();
/** get status
* @return true if everything is ok, else false
*/
inline bool get_status() const
{
return status;
}
/// returns current pseudo value
inline float64_t get_pseudo() const
{
return PSEUDO ;
}
/// sets current pseudo value
inline void set_pseudo(float64_t pseudo)
{
PSEUDO=pseudo ;
}
#ifdef USE_HMMPARALLEL_STRUCTURES
static void* bw_dim_prefetch(void * params);
static void* bw_single_dim_prefetch(void * params);
static void* vit_dim_prefetch(void * params);
#endif
#ifdef FIX_POS
/** access function to set value in fix_pos_state vector in underlying model
* @see Model
*/
inline bool set_fix_pos_state(int32_t pos, T_STATES state, char value)
{
if (!model)
return false ;
model->set_fix_pos_state(pos, state, N, value) ;
return true ;
} ;
#endif
//@}
/** observation functions
* set/get observation matrix
*/
//@{
/** set new observations
* sets the observation pointer and initializes observation-dependent caches
* if hmm is given, then the caches of the model hmm are used
*/
void set_observations(CStringFeatures<uint16_t>* obs, CHMM* hmm=NULL);
/** set new observations
* only set the observation pointer and drop caches if there were any
*/
void set_observation_nocache(CStringFeatures<uint16_t>* obs);
/// return observation pointer
inline CStringFeatures<uint16_t>* get_observations()
{
SG_REF(p_observations);
return p_observations;
}
//@}
/**@name load/save functions.
* for observations/model/traindefinitions
*/
//@{
/** read definitions file (learn_x,const_x) used for training.
* -format specs: definition_file (train.def)
% HMM-TRAIN - specification
% learn_a - elements in state_transition_matrix to be learned
% learn_b - elements in oberservation_per_state_matrix to be learned
% note: each line stands for
% state, observation(0), observation(1)...observation(NOW)
% learn_p - elements in initial distribution to be learned
% learn_q - elements in the end-state distribution to be learned
%
% const_x - specifies initial values of elements
% rest is assumed to be 0.0
%
% NOTE: IMPLICIT DEFINES:
% define A 0
% define C 1
% define G 2
% define T 3
learn_a=[ [int32_t,int32_t];
[int32_t,int32_t];
[int32_t,int32_t];
........
[int32_t,int32_t];
[-1,-1];
];
learn_b=[ [int32_t,int32_t,int32_t,...,int32_t];
[int32_t,int32_t,int32_t,...,int32_t];
[int32_t,int32_t,int32_t,...,int32_t];
........
[int32_t,int32_t,int32_t,...,int32_t];
[-1,-1];
];
learn_p= [ int32_t, ... , int32_t, -1 ];
learn_q= [ int32_t, ... , int32_t, -1 ];
const_a=[ [int32_t,int32_t,float64_t];
[int32_t,int32_t,float64_t];
[int32_t,int32_t,float64_t];
........
[int32_t,int32_t,float64_t];
[-1,-1,-1];
];
const_b=[ [int32_t,int32_t,int32_t,...,int32_t,float64_t];
[int32_t,int32_t,int32_t,...,int32_t,float64_t];
[int32_t,int32_t,int32_t,...,int32_t,<DOUBLE];
........
[int32_t,int32_t,int32_t,...,int32_t,float64_t];
[-1,-1,-1];
];
const_p[]=[ [int32_t, float64_t], ... , [int32_t,float64_t], [-1,-1] ];
const_q[]=[ [int32_t, float64_t], ... , [int32_t,float64_t], [-1,-1] ];
* @param file filehandle to definitions file
* @param verbose true for verbose messages
* @param initialize true to initialize to underlying HMM
*/
bool load_definitions(FILE* file, bool verbose, bool initialize=true);
/** read model from file.
-format specs: model_file (model.hmm)
% HMM - specification
% N - number of states
% M - number of observation_tokens
% a is state_transition_matrix
% size(a)= [N,N]
%
% b is observation_per_state_matrix
% size(b)= [N,M]
%
% p is initial distribution
% size(p)= [1, N]
N=int32_t;
M=int32_t;
p=[float64_t,float64_t...float64_t];
q=[float64_t,float64_t...float64_t];
a=[ [float64_t,float64_t...float64_t];
[float64_t,float64_t...float64_t];
[float64_t,float64_t...float64_t];
[float64_t,float64_t...float64_t];
[float64_t,float64_t...float64_t];
];
b=[ [float64_t,float64_t...float64_t];
[float64_t,float64_t...float64_t];
[float64_t,float64_t...float64_t];
[float64_t,float64_t...float64_t];
[float64_t,float64_t...float64_t];
];
* @param file filehandle to model file
*/
bool load_model(FILE* file);
/** save model to file.
* @param file filehandle to model file
*/
bool save_model(FILE* file);
/** save model derivatives to file in ascii format.
* @param file filehandle
*/
bool save_model_derivatives(FILE* file);
/** save model derivatives to file in binary format.
* @param file filehandle
*/
bool save_model_derivatives_bin(FILE* file);
/** save model in binary format.
* @param file filehandle
*/
bool save_model_bin(FILE* file);
/// numerically check whether derivates were calculated right
bool check_model_derivatives() ;
bool check_model_derivatives_combined() ;
/** get viterbi path and path probability
* @param dim dimension for which to obtain best path
* @param prob likelihood of path
* @return viterbi path
*/
T_STATES* get_path(int32_t dim, float64_t& prob);
/** save viterbi path in ascii format
* @param file filehandle
*/
bool save_path(FILE* file);
/** save viterbi path in ascii format
* @param file filehandle
*/
bool save_path_derivatives(FILE* file);
/** save viterbi path in binary format
* @param file filehandle
*/
bool save_path_derivatives_bin(FILE* file);
#ifdef USE_HMMDEBUG
/// numerically check whether derivates were calculated right
bool check_path_derivatives() ;
#endif //USE_HMMDEBUG
/** save model probability in binary format
* @param file filehandle
*/
bool save_likelihood_bin(FILE* file);
/** save model probability in ascii format
* @param file filehandle
*/
bool save_likelihood(FILE* file);
//@}
/**@name access functions for model parameters
* for all the arrays a,b,p,q,A,B,psi
* and scalar model parameters like N,M
*/
//@{
/// access function for number of states N
inline T_STATES get_N() const { return N ; }
/// access function for number of observations M
inline int32_t get_M() const { return M ; }
/** access function for probability of end states
* @param offset index 0...N-1
* @param value value to be set
*/
inline void set_q(T_STATES offset, float64_t value)
{
#ifdef HMM_DEBUG
if (offset>=N)
SG_DEBUG("index out of range in set_q(%i,%e) [%i]\n", offset,value,N)
#endif
end_state_distribution_q[offset]=value;
}
/** access function for probability of first state
* @param offset index 0...N-1
* @param value value to be set
*/
inline void set_p(T_STATES offset, float64_t value)
{
#ifdef HMM_DEBUG
if (offset>=N)
SG_DEBUG("index out of range in set_p(%i,.) [%i]\n", offset,N)
#endif
initial_state_distribution_p[offset]=value;
}
/** access function for matrix A
* @param line_ row in matrix 0...N-1
* @param column column in matrix 0...N-1
* @param value value to be set
*/
inline void set_A(T_STATES line_, T_STATES column, float64_t value)
{
#ifdef HMM_DEBUG
if ((line_>N)||(column>N))
SG_DEBUG("index out of range in set_A(%i,%i,.) [%i,%i]\n",line_,column,N,N)
#endif
transition_matrix_A[line_+column*N]=value;
}
/** access function for matrix a
* @param line_ row in matrix 0...N-1
* @param column column in matrix 0...N-1
* @param value value to be set
*/
inline void set_a(T_STATES line_, T_STATES column, float64_t value)
{
#ifdef HMM_DEBUG
if ((line_>N)||(column>N))
SG_DEBUG("index out of range in set_a(%i,%i,.) [%i,%i]\n",line_,column,N,N)
#endif
transition_matrix_a[line_+column*N]=value; // look also best_path!
}
/** access function for matrix B
* @param line_ row in matrix 0...N-1
* @param column column in matrix 0...M-1
* @param value value to be set
*/
inline void set_B(T_STATES line_, uint16_t column, float64_t value)
{
#ifdef HMM_DEBUG
if ((line_>=N)||(column>=M))
SG_DEBUG("index out of range in set_B(%i,%i) [%i,%i]\n", line_, column,N,M)
#endif
observation_matrix_B[line_*M+column]=value;
}
/** access function for matrix b
* @param line_ row in matrix 0...N-1
* @param column column in matrix 0...M-1
* @param value value to be set
*/
inline void set_b(T_STATES line_, uint16_t column, float64_t value)
{
#ifdef HMM_DEBUG
if ((line_>=N)||(column>=M))
SG_DEBUG("index out of range in set_b(%i,%i) [%i,%i]\n", line_, column,N,M)
#endif
observation_matrix_b[line_*M+column]=value;
}
/** access function for backtracking table psi
* @param time time 0...T-1
* @param state state 0...N-1
* @param value value to be set
* @param dimension dimension of observations 0...DIMENSION-1
*/
inline void set_psi(
int32_t time, T_STATES state, T_STATES value, int32_t dimension)
{
#ifdef HMM_DEBUG
if ((time>=p_observations->get_max_vector_length())||(state>N))
SG_DEBUG("index out of range in set_psi(%i,%i,.) [%i,%i]\n",time,state,p_observations->get_max_vector_length(),N)
#endif
STATES_PER_OBSERVATION_PSI(dimension)[time*N+state]=value;
}
/** access function for probability of end states
* @param offset index 0...N-1
* @return value at offset
*/
inline float64_t get_q(T_STATES offset) const
{
#ifdef HMM_DEBUG
if (offset>=N)
SG_DEBUG("index out of range in %e=get_q(%i) [%i]\n", end_state_distribution_q[offset],offset,N)
#endif
return end_state_distribution_q[offset];
}
/** access function for probability of initial states
* @param offset index 0...N-1
* @return value at offset
*/
inline float64_t get_p(T_STATES offset) const
{
#ifdef HMM_DEBUG
if (offset>=N)
SG_DEBUG("index out of range in get_p(%i,.) [%i]\n", offset,N)
#endif
return initial_state_distribution_p[offset];
}
/** access function for matrix A
* @param line_ row in matrix 0...N-1
* @param column column in matrix 0...N-1
* @return value at position line colum
*/
inline float64_t get_A(T_STATES line_, T_STATES column) const
{
#ifdef HMM_DEBUG
if ((line_>N)||(column>N))
SG_DEBUG("index out of range in get_A(%i,%i) [%i,%i]\n",line_,column,N,N)
#endif
return transition_matrix_A[line_+column*N];
}
/** access function for matrix a
* @param line_ row in matrix 0...N-1
* @param column column in matrix 0...N-1
* @return value at position line colum
*/
inline float64_t get_a(T_STATES line_, T_STATES column) const
{
#ifdef HMM_DEBUG
if ((line_>N)||(column>N))
SG_DEBUG("index out of range in get_a(%i,%i) [%i,%i]\n",line_,column,N,N)
#endif
return transition_matrix_a[line_+column*N]; // look also best_path()!
}
/** access function for matrix B
* @param line_ row in matrix 0...N-1
* @param column column in matrix 0...M-1
* @return value at position line colum
*/
inline float64_t get_B(T_STATES line_, uint16_t column) const
{
#ifdef HMM_DEBUG
if ((line_>=N)||(column>=M))
SG_DEBUG("index out of range in get_B(%i,%i) [%i,%i]\n", line_, column,N,M)
#endif
return observation_matrix_B[line_*M+column];
}
/** access function for matrix b
* @param line_ row in matrix 0...N-1
* @param column column in matrix 0...M-1
* @return value at position line colum
*/
inline float64_t get_b(T_STATES line_, uint16_t column) const
{
#ifdef HMM_DEBUG
if ((line_>=N)||(column>=M))
SG_DEBUG("index out of range in get_b(%i,%i) [%i,%i]\n", line_, column,N,M)
#endif
//SG_PRINT("idx %d\n", line_*M+column)
return observation_matrix_b[line_*M+column];
}
/** access function for backtracking table psi
* @param time time 0...T-1
* @param state state 0...N-1
* @param dimension dimension of observations 0...DIMENSION-1
* @return state at specified time and position
*/
inline T_STATES get_psi(
int32_t time, T_STATES state, int32_t dimension) const
{
#ifdef HMM_DEBUG
if ((time>=p_observations->get_max_vector_length())||(state>N))
SG_DEBUG("index out of range in get_psi(%i,%i) [%i,%i]\n",time,state,p_observations->get_max_vector_length(),N)
#endif
return STATES_PER_OBSERVATION_PSI(dimension)[time*N+state];
}
//@}
/** @return object name */
virtual const char* get_name() const { return "HMM"; }
protected:
/**@name model specific variables.
* these are p,q,a,b,N,M etc
*/
//@{
/// number of observation symbols eg. ACGT -> 0123
int32_t M;
/// number of states
int32_t N;
/// define pseudocounts against overfitting
float64_t PSEUDO;
// line number during processing input files
int32_t line;
/// observation matrix
CStringFeatures<uint16_t>* p_observations;
//train definition for HMM
Model* model;
/// matrix of absolute counts of transitions
float64_t* transition_matrix_A;
/// matrix of absolute counts of observations within each state
float64_t* observation_matrix_B;
/// transition matrix
float64_t* transition_matrix_a;
/// initial distribution of states
float64_t* initial_state_distribution_p;
/// distribution of end-states
float64_t* end_state_distribution_q;
/// distribution of observations within each state
float64_t* observation_matrix_b;
/// convergence criterion iterations
int32_t iterations;
int32_t iteration_count;
/// convergence criterion epsilon
float64_t epsilon;
int32_t conv_it;
/// probability of best path
float64_t all_pat_prob;
/// probability of best path
float64_t pat_prob;
/// probability of model
float64_t mod_prob;
/// true if model probability is up to date
bool mod_prob_updated;
/// true if path probability is up to date
bool all_path_prob_updated;
/// dimension for which path_deriv was calculated
int32_t path_deriv_dimension;
/// true if path derivative is up to date
bool path_deriv_updated;
// true if model is using log likelihood
bool loglikelihood;
// true->ok, false->error
bool status;
// true->stolen from other HMMs, false->got own
bool reused_caches;
//@}
#ifdef USE_HMMPARALLEL_STRUCTURES
/** array of size N*parallel.get_num_threads() for temporary calculations */
float64_t** arrayN1 /*[parallel.get_num_threads()]*/ ;
/** array of size N*parallel.get_num_threads() for temporary calculations */
float64_t** arrayN2 /*[parallel.get_num_threads()]*/ ;
#else //USE_HMMPARALLEL_STRUCTURES
/** array of size N for temporary calculations */
float64_t* arrayN1;
/** array of size N for temporary calculations */
float64_t* arrayN2;
#endif //USE_HMMPARALLEL_STRUCTURES
#ifdef USE_LOGSUMARRAY
#ifdef USE_HMMPARALLEL_STRUCTURES
/** array for for temporary calculations of log_sum */
float64_t** arrayS /*[parallel.get_num_threads()]*/;
#else
/** array for for temporary calculations of log_sum */
float64_t* arrayS;
#endif // USE_HMMPARALLEL_STRUCTURES
#endif // USE_LOGSUMARRAY
#ifdef USE_HMMPARALLEL_STRUCTURES
/// cache for forward variables can be terrible HUGE O(T*N)
T_ALPHA_BETA* alpha_cache /*[parallel.get_num_threads()]*/ ;
/// cache for backward variables can be terrible HUGE O(T*N)
T_ALPHA_BETA* beta_cache /*[parallel.get_num_threads()]*/ ;
/// backtracking table for viterbi can be terrible HUGE O(T*N)
T_STATES** states_per_observation_psi /*[parallel.get_num_threads()]*/ ;
/// best path (=state sequence) through model
T_STATES** path /*[parallel.get_num_threads()]*/ ;
/// true if path probability is up to date
bool* path_prob_updated /*[parallel.get_num_threads()]*/;
/// dimension for which path_prob was calculated
int32_t* path_prob_dimension /*[parallel.get_num_threads()]*/ ;
#else //USE_HMMPARALLEL_STRUCTURES
/// cache for forward variables can be terrible HUGE O(T*N)
T_ALPHA_BETA alpha_cache;
/// cache for backward variables can be terrible HUGE O(T*N)
T_ALPHA_BETA beta_cache;
/// backtracking table for viterbi can be terrible HUGE O(T*N)
T_STATES* states_per_observation_psi;
/// best path (=state sequence) through model
T_STATES* path;
/// true if path probability is up to date
bool path_prob_updated;
/// dimension for which path_prob was calculated
int32_t path_prob_dimension;
#endif //USE_HMMPARALLEL_STRUCTURES
//@}
/** GOTN */
static const int32_t GOTN;
/** GOTM */
static const int32_t GOTM;
/** GOTO */
static const int32_t GOTO;
/** GOTa */
static const int32_t GOTa;
/** GOTb */
static const int32_t GOTb;
/** GOTp */
static const int32_t GOTp;
/** GOTq */
static const int32_t GOTq;
/** GOTlearn_a */
static const int32_t GOTlearn_a;
/** GOTlearn_b */
static const int32_t GOTlearn_b;
/** GOTlearn_p */
static const int32_t GOTlearn_p;
/** GOTlearn_q */
static const int32_t GOTlearn_q;
/** GOTconst_a */
static const int32_t GOTconst_a;
/** GOTconst_b */
static const int32_t GOTconst_b;
/** GOTconst_p */
static const int32_t GOTconst_p;
/** GOTconst_q */
static const int32_t GOTconst_q;
public:
/**@name functions for observations
* management and access functions for observation matrix
*/
//@{
/// calculates probability of being in state i at time t for dimension
inline float64_t state_probability(
int32_t time, int32_t state, int32_t dimension)
{
return forward(time, state, dimension) + backward(time, state, dimension) - model_probability(dimension);
}
/// calculates probability of being in state i at time t and state j at time t+1 for dimension
inline float64_t transition_probability(
int32_t time, int32_t state_i, int32_t state_j, int32_t dimension)
{
return forward(time, state_i, dimension) +
backward(time+1, state_j, dimension) +
get_a(state_i,state_j) + get_b(state_j,p_observations->get_feature(dimension ,time+1)) - model_probability(dimension);
}
/**@name derivatives of model probabilities.
* computes log dp(lambda)/d lambda_i
* @param dimension dimension for that derivatives are calculated
* @param i,j parameter specific
*/
//@{
/** computes log dp(lambda)/d b_ij for linear model
*/
inline float64_t linear_model_derivative(
T_STATES i, uint16_t j, int32_t dimension)
{
float64_t der=0;
for (int32_t k=0; k<N; k++)
{
if (k!=i || p_observations->get_feature(dimension, k) != j)
der+=get_b(k, p_observations->get_feature(dimension, k));
}
return der;
}
/** computes log dp(lambda)/d p_i.
* backward path downto time 0 multiplied by observing first symbol in path at state i
*/
inline float64_t model_derivative_p(T_STATES i, int32_t dimension)
{
return backward(0,i,dimension)+get_b(i, p_observations->get_feature(dimension, 0));
}
/** computes log dp(lambda)/d q_i.
* forward path upto time T-1
*/
inline float64_t model_derivative_q(T_STATES i, int32_t dimension)
{
return forward(p_observations->get_vector_length(dimension)-1,i,dimension) ;
}
/// computes log dp(lambda)/d a_ij.
inline float64_t model_derivative_a(T_STATES i, T_STATES j, int32_t dimension)
{
float64_t sum=-CMath::INFTY;
for (int32_t t=0; t<p_observations->get_vector_length(dimension)-1; t++)
sum= CMath::logarithmic_sum(sum, forward(t, i, dimension) + backward(t+1, j, dimension) + get_b(j, p_observations->get_feature(dimension,t+1)));
return sum;
}
/// computes log dp(lambda)/d b_ij.
inline float64_t model_derivative_b(T_STATES i, uint16_t j, int32_t dimension)
{
float64_t sum=-CMath::INFTY;
for (int32_t t=0; t<p_observations->get_vector_length(dimension); t++)
{
if (p_observations->get_feature(dimension,t)==j)
sum= CMath::logarithmic_sum(sum, forward(t,i,dimension)+backward(t,i,dimension)-get_b(i,p_observations->get_feature(dimension,t)));
}
//if (sum==-CMath::INFTY)
// SG_DEBUG("log derivative is -inf: dim=%i, state=%i, obs=%i\n",dimension, i, j)
return sum;
}
//@}
/**@name derivatives of path probabilities.
* computes d log p(lambda,best_path)/d lambda_i
* @param dimension dimension for that derivatives are calculated
* @param i,j parameter specific
*/
//@{
///computes d log p(lambda,best_path)/d p_i
inline float64_t path_derivative_p(T_STATES i, int32_t dimension)
{
best_path(dimension);
return (i==PATH(dimension)[0]) ? (exp(-get_p(PATH(dimension)[0]))) : (0) ;
}
/// computes d log p(lambda,best_path)/d q_i
inline float64_t path_derivative_q(T_STATES i, int32_t dimension)
{
best_path(dimension);
return (i==PATH(dimension)[p_observations->get_vector_length(dimension)-1]) ? (exp(-get_q(PATH(dimension)[p_observations->get_vector_length(dimension)-1]))) : 0 ;
}
/// computes d log p(lambda,best_path)/d a_ij
inline float64_t path_derivative_a(T_STATES i, T_STATES j, int32_t dimension)
{
prepare_path_derivative(dimension) ;
return (get_A(i,j)==0) ? (0) : (get_A(i,j)*exp(-get_a(i,j))) ;
}
/// computes d log p(lambda,best_path)/d b_ij
inline float64_t path_derivative_b(T_STATES i, uint16_t j, int32_t dimension)
{
prepare_path_derivative(dimension) ;
return (get_B(i,j)==0) ? (0) : (get_B(i,j)*exp(-get_b(i,j))) ;
}
//@}
protected:
/**@name input helper functions.
* for reading model/definition/observation files
*/
//@{
/// put a sequence of numbers into the buffer
bool get_numbuffer(FILE* file, char* buffer, int32_t length);
/// expect open bracket.
void open_bracket(FILE* file);
/// expect closing bracket
void close_bracket(FILE* file);
/// expect comma or space.
bool comma_or_space(FILE* file);
/// parse error messages
inline void error(int32_t p_line, const char* str)
{
if (p_line)
SG_ERROR("error in line %d %s\n", p_line, str)
else
SG_ERROR("error %s\n", str)
}
//@}
/// initialization function that is called before path_derivatives are calculated
inline void prepare_path_derivative(int32_t dim)
{
if (path_deriv_updated && (path_deriv_dimension==dim))
return ;
int32_t i,j,t ;
best_path(dim);
//initialize with zeros
for (i=0; i<N; i++)
{
for (j=0; j<N; j++)
set_A(i,j, 0);
for (j=0; j<M; j++)
set_B(i,j, 0);
}
//counting occurences for A and B
for (t=0; t<p_observations->get_vector_length(dim)-1; t++)
{
set_A(PATH(dim)[t], PATH(dim)[t+1], get_A(PATH(dim)[t], PATH(dim)[t+1])+1);
set_B(PATH(dim)[t], p_observations->get_feature(dim,t), get_B(PATH(dim)[t], p_observations->get_feature(dim,t))+1);
}
set_B(PATH(dim)[p_observations->get_vector_length(dim)-1], p_observations->get_feature(dim,p_observations->get_vector_length(dim)-1), get_B(PATH(dim)[p_observations->get_vector_length(dim)-1], p_observations->get_feature(dim,p_observations->get_vector_length(dim)-1)) + 1);
path_deriv_dimension=dim ;
path_deriv_updated=true ;
} ;
//@}
/// inline proxies for forward pass
inline float64_t forward(int32_t time, int32_t state, int32_t dimension)
{
if (time<1)
time=0;
if (ALPHA_CACHE(dimension).table && (dimension==ALPHA_CACHE(dimension).dimension) && ALPHA_CACHE(dimension).updated)
{
if (time<p_observations->get_vector_length(dimension))
return ALPHA_CACHE(dimension).table[time*N+state];
else
return ALPHA_CACHE(dimension).sum;
}
else
return forward_comp(time, state, dimension) ;
}
/// inline proxies for backward pass
inline float64_t backward(int32_t time, int32_t state, int32_t dimension)
{
if (BETA_CACHE(dimension).table && (dimension==BETA_CACHE(dimension).dimension) && (BETA_CACHE(dimension).updated))
{
if (time<0)
return BETA_CACHE(dimension).sum;
if (time<p_observations->get_vector_length(dimension))
return BETA_CACHE(dimension).table[time*N+state];
else
return -CMath::INFTY;
}
else
return backward_comp(time, state, dimension) ;
}
};
}
#endif
|