/usr/include/shogun/classifier/svm/WDSVMOcas.h is in libshogun-dev 3.2.0-7.3build4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 2007-2008 Vojtech Franc
* Written (W) 2007-2009 Soeren Sonnenburg
* Copyright (C) 2007-2009 Fraunhofer Institute FIRST and Max-Planck-Society
*/
#ifndef _WDSVMOCAS_H___
#define _WDSVMOCAS_H___
#include <shogun/lib/common.h>
#include <shogun/machine/Machine.h>
#include <shogun/classifier/svm/SVMOcas.h>
#include <shogun/features/StringFeatures.h>
#include <shogun/labels/Labels.h>
namespace shogun
{
template <class ST> class CStringFeatures;
/** @brief class WDSVMOcas */
class CWDSVMOcas : public CMachine
{
public:
/** problem type */
MACHINE_PROBLEM_TYPE(PT_BINARY);
/** default constructor */
CWDSVMOcas();
/** constructor
*
* @param type type of SVM
*/
CWDSVMOcas(E_SVM_TYPE type);
/** constructor
*
* @param C constant C
* @param d degree
* @param from_d from degree
* @param traindat training features
* @param trainlab labels for training features
*/
CWDSVMOcas(
float64_t C, int32_t d, int32_t from_d,
CStringFeatures<uint8_t>* traindat, CLabels* trainlab);
virtual ~CWDSVMOcas();
/** get classifier type
*
* @return classifier type WDSVMOCAS
*/
virtual EMachineType get_classifier_type() { return CT_WDSVMOCAS; }
/** set C
*
* @param c_neg new C constant for negatively labeled examples
* @param c_pos new C constant for positively labeled examples
*
*/
inline void set_C(float64_t c_neg, float64_t c_pos) { C1=c_neg; C2=c_pos; }
/** get C1
*
* @return C1
*/
inline float64_t get_C1() { return C1; }
/** get C2
*
* @return C2
*/
inline float64_t get_C2() { return C2; }
/** set epsilon
*
* @param eps new epsilon
*/
inline void set_epsilon(float64_t eps) { epsilon=eps; }
/** get epsilon
*
* @return epsilon
*/
inline float64_t get_epsilon() { return epsilon; }
/** set features
*
* @param feat features to set
*/
inline void set_features(CStringFeatures<uint8_t>* feat)
{
SG_REF(feat);
SG_UNREF(features);
features=feat;
}
/** get features
*
* @return features
*/
inline CStringFeatures<uint8_t>* get_features()
{
SG_REF(features);
return features;
}
/** set if bias shall be enabled
*
* @param enable_bias if bias shall be enabled
*/
inline void set_bias_enabled(bool enable_bias) { use_bias=enable_bias; }
/** check if bias is enabled
*
* @return if bias is enabled
*/
inline bool get_bias_enabled() { return use_bias; }
/** set buffer size
*
* @param sz buffer size
*/
inline void set_bufsize(int32_t sz) { bufsize=sz; }
/** get buffer size
*
* @return buffer size
*/
inline int32_t get_bufsize() { return bufsize; }
/** set degree
*
* @param d degree
* @param from_d from degree
*/
inline void set_degree(int32_t d, int32_t from_d)
{
degree=d;
from_degree=from_d;
}
/** get degree
*
* @return degree
*/
inline int32_t get_degree() { return degree; }
/** classify objects
* for binary classification problems
*
* @param data (test)data to be classified
* @return classified labels
*/
virtual CBinaryLabels* apply_binary(CFeatures* data=NULL);
/** classify objects
* for regression problems
*
* @param data (test)data to be classified
* @return classified labels
*/
virtual CRegressionLabels* apply_regression(CFeatures* data=NULL);
/** classify one example
*
* @param num number of example to classify
* @return classified result
*/
virtual float64_t apply_one(int32_t num)
{
ASSERT(features)
if (!wd_weights)
set_wd_weights();
int32_t len=0;
float64_t sum=0;
bool free_vec;
uint8_t* vec=features->get_feature_vector(num, len, free_vec);
//SG_INFO("len %d, string_length %d\n", len, string_length)
ASSERT(len==string_length)
for (int32_t j=0; j<string_length; j++)
{
int32_t offs=w_dim_single_char*j;
int32_t val=0;
for (int32_t k=0; (j+k<string_length) && (k<degree); k++)
{
val=val*alphabet_size + vec[j+k];
sum+=wd_weights[k] * w[offs+val];
offs+=w_offsets[k];
}
}
features->free_feature_vector(vec, num, free_vec);
return sum/normalization_const;
}
/** set normalization const */
inline void set_normalization_const()
{
ASSERT(features)
normalization_const=0;
for (int32_t i=0; i<degree; i++)
normalization_const+=(string_length-i)*wd_weights[i]*wd_weights[i];
normalization_const=CMath::sqrt(normalization_const);
SG_DEBUG("normalization_const:%f\n", normalization_const)
}
/** get normalization const
*
* @return normalization const
*/
inline float64_t get_normalization_const() { return normalization_const; }
protected:
/** get real outputs
*
* @param data features to apply for
*/
SGVector<float64_t> apply_get_outputs(CFeatures* data);
/** set wd weights
*
* @return w_dim_single_c
*/
int32_t set_wd_weights();
/** compute W
*
* @param sq_norm_W square normed W
* @param dp_WoldW dp W old W
* @param alpha alpha
* @param nSel nSel
* @param ptr ptr
*/
static void compute_W(
float64_t *sq_norm_W, float64_t *dp_WoldW, float64_t *alpha,
uint32_t nSel, void* ptr );
/** update W
*
* @param t t
* @param ptr ptr
* @return something floaty
*/
static float64_t update_W(float64_t t, void* ptr );
/** helper function for adding a new cut
*
* @param ptr
* @return ptr
*/
static void* add_new_cut_helper(void* ptr);
/** add new cut
*
* @param new_col_H new col H
* @param new_cut new cut
* @param cut_length length of cut
* @param nSel nSel
* @param ptr ptr
*/
static int add_new_cut(
float64_t *new_col_H, uint32_t *new_cut, uint32_t cut_length,
uint32_t nSel, void* ptr );
/** helper function for computing the output
*
* @param ptr
* @return ptr
*/
static void* compute_output_helper(void* ptr);
/** compute output
*
* @param output output
* @param ptr ptr
*/
static int compute_output( float64_t *output, void* ptr );
/** sort
*
* @param vals vals
* @param data data
* @param size size
*/
static int sort( float64_t* vals, float64_t* data, uint32_t size);
/** print nothing */
static inline void print(ocas_return_value_T value)
{
return;
}
/** @return object name */
virtual const char* get_name() const { return "WDSVMOcas"; }
protected:
/** train classifier
*
* @param data training data (parameter can be avoided if distance or
* kernel-based classifiers are used and distance/kernels are
* initialized with train data)
*
* @return whether training was successful
*/
virtual bool train_machine(CFeatures* data=NULL);
protected:
/** features */
CStringFeatures<uint8_t>* features;
/** if bias shall be used */
bool use_bias;
/** buffer size */
int32_t bufsize;
/** C1 */
float64_t C1;
/** C2 */
float64_t C2;
/** epsilon */
float64_t epsilon;
/** method */
E_SVM_TYPE method;
/** degree */
int32_t degree;
/** from degree */
int32_t from_degree;
/** wd weights */
float32_t* wd_weights;
/** num vectors */
int32_t num_vec;
/** length of string in vector */
int32_t string_length;
/** size of alphabet */
int32_t alphabet_size;
/** normalization const */
float64_t normalization_const;
/** bias */
float64_t bias;
/** old_bias */
float64_t old_bias;
/** w offsets */
int32_t* w_offsets;
/** w dim */
int32_t w_dim;
/** w dim of a single char */
int32_t w_dim_single_char;
/** w */
float32_t* w;
/** old w*/
float32_t* old_w;
/** labels */
float64_t* lab;
/** cuts */
float32_t** cuts;
/** bias dimensions */
float64_t* cp_bias;
};
}
#endif
|