This file is indexed.

/usr/include/shogun/classifier/svm/SGDQN.h is in libshogun-dev 3.2.0-7.3build4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
#ifndef _SGDQN_H___
#define _SGDQN_H___

/*
   SVM with Quasi-Newton stochastic gradient
   Copyright (C) 2009- Antoine Bordes

   This program is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with this library; if not, write to the Free Software
   Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA

   Shogun adjustments (w) 2011 Siddharth Kherada
*/

#include <shogun/lib/common.h>
#include <shogun/machine/LinearMachine.h>
#include <shogun/features/DotFeatures.h>
#include <shogun/labels/Labels.h>
#include <shogun/loss/LossFunction.h>

namespace shogun
{
/** @brief class SGDQN */
class CSGDQN : public CLinearMachine
{
	public:

		/** problem type */
		MACHINE_PROBLEM_TYPE(PT_BINARY);

		/** default constructor  */
		CSGDQN();

		/** constructor
		 *
		 * @param C constant C
		 */
		CSGDQN(float64_t C);

		/** constructor
		 *
		 * @param C constant C
		 * @param traindat training features
		 * @param trainlab labels for training features
		 */
		CSGDQN(
			float64_t C, CDotFeatures* traindat,
			CLabels* trainlab);

		virtual ~CSGDQN();

		/** get classifier type
		 *
		 * @return classifier type SVMSGDQN
		 */
		virtual EMachineType get_classifier_type() { return CT_SGDQN; }

		/** train classifier
		 *
		 * @param data training data (parameter can be avoided if distance or
		 * kernel-based classifiers are used and distance/kernels are
		 * initialized with train data)
		 *
		 * @return whether training was successful
		 */
		virtual bool train(CFeatures* data=NULL);

		/** set C
		 *
		 * @param c_neg new C constant for negatively labeled examples
		 * @param c_pos new C constant for positively labeled examples
		 *
		 */
		inline void set_C(float64_t c_neg, float64_t c_pos) { C1=c_neg; C2=c_pos; }

		/** get C1
		 *
		 * @return C1
		 */
		inline float64_t get_C1() { return C1; }

		/** get C2
		 *
		 * @return C2
		 */
		inline float64_t get_C2() { return C2; }

		/** set epochs
		 *
		 * @param e new number of training epochs
		 */
		inline void set_epochs(int32_t e) { epochs=e; }

		/** get epochs
		 *
		 * @return the number of training epochs
		 */
		inline int32_t get_epochs() { return epochs; }

		/**computing diagonal scaling matrix B as ratio*/
		void compute_ratio(float64_t* W,float64_t* W_1,float64_t* B,float64_t* dst,int32_t dim,float64_t regularizer_lambda,float64_t loss);

		/** combine and clip scaling matrix B */
		void combine_and_clip(float64_t* Bc,float64_t* B,int32_t dim,float64_t c1,float64_t c2,float64_t v1,float64_t v2);

		/** Set the loss function to use
		 *
		 * @param loss_func object derived from CLossFunction
		 */
		void set_loss_function(CLossFunction* loss_func);

		/** Return the loss function
		 *
		 * @return loss function as CLossFunction*
		 */
		inline CLossFunction* get_loss_function() { SG_REF(loss); return loss; }

		/** @return object name */
		virtual const char* get_name() const { return "SGDQN"; }

	protected:
		/** calibrate */
		void calibrate();

	private:
		void init();

	private:
		float64_t t;
		float64_t C1;
		float64_t C2;
		int32_t epochs;
		int32_t skip;
		int32_t count;

		CLossFunction* loss;
};
}
#endif