/usr/include/shogun/classifier/svm/LibLinear.h is in libshogun-dev 3.2.0-7.3build4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 2007-2010 Soeren Sonnenburg
* Copyright (c) 2007-2009 The LIBLINEAR Project.
* Copyright (C) 2007-2010 Fraunhofer Institute FIRST and Max-Planck-Society
*/
#ifndef _LIBLINEAR_H___
#define _LIBLINEAR_H___
#include <shogun/lib/config.h>
#include <shogun/lib/common.h>
#include <shogun/base/Parameter.h>
#include <shogun/machine/LinearMachine.h>
#include <shogun/optimization/liblinear/shogun_liblinear.h>
namespace shogun
{
/** liblinar solver type */
enum LIBLINEAR_SOLVER_TYPE
{
/// L2 regularized linear logistic regression
L2R_LR,
/// L2 regularized SVM with L2-loss using dual coordinate descent
L2R_L2LOSS_SVC_DUAL,
/// L2 regularized SVM with L2-loss using newton in the primal
L2R_L2LOSS_SVC,
/// L2 regularized linear SVM with L1-loss using dual coordinate descent
// (default since this is the standard SVM)
L2R_L1LOSS_SVC_DUAL,
/// L1 regularized SVM with L2-loss using dual coordinate descent
L1R_L2LOSS_SVC,
/// L1 regularized logistic regression
L1R_LR,
/// L2 regularized linear logistic regression via dual
L2R_LR_DUAL
};
/** @brief class to implement LibLinear */
class CLibLinear : public CLinearMachine
{
public:
MACHINE_PROBLEM_TYPE(PT_BINARY)
/** default constructor */
CLibLinear();
/** constructor
*
* @param liblinear_solver_type liblinear_solver_type
*/
CLibLinear(LIBLINEAR_SOLVER_TYPE liblinear_solver_type);
/** constructor (using L2R_L1LOSS_SVC_DUAL as default)
*
* @param C constant C
* @param traindat training features
* @param trainlab training labels
*/
CLibLinear(
float64_t C, CDotFeatures* traindat,
CLabels* trainlab);
/** destructor */
virtual ~CLibLinear();
/**
* @return the currently used liblinear solver
*/
inline LIBLINEAR_SOLVER_TYPE get_liblinear_solver_type()
{
return liblinear_solver_type;
}
/** set the liblinear solver
*
* @param st the liblinear solver
*/
inline void set_liblinear_solver_type(LIBLINEAR_SOLVER_TYPE st)
{
liblinear_solver_type=st;
}
/** get classifier type
*
* @return the classifier type
*/
virtual EMachineType get_classifier_type() { return CT_LIBLINEAR; }
/** set C
*
* @param c_neg C1
* @param c_pos C2
*/
inline void set_C(float64_t c_neg, float64_t c_pos) { C1=c_neg; C2=c_pos; }
/** get C1
*
* @return C1
*/
inline float64_t get_C1() { return C1; }
/** get C2
*
* @return C2
*/
inline float64_t get_C2() { return C2; }
/** set epsilon
*
* @param eps new epsilon
*/
inline void set_epsilon(float64_t eps) { epsilon=eps; }
/** get epsilon
*
* @return epsilon
*/
inline float64_t get_epsilon() { return epsilon; }
/** set if bias shall be enabled
*
* @param enable_bias if bias shall be enabled
*/
inline void set_bias_enabled(bool enable_bias) { use_bias=enable_bias; }
/** check if bias is enabled
*
* @return if bias is enabled
*/
inline bool get_bias_enabled() { return use_bias; }
/** @return object name */
virtual const char* get_name() const { return "LibLinear"; }
/** get the maximum number of iterations liblinear is allowed to do */
inline int32_t get_max_iterations()
{
return max_iterations;
}
/** set the maximum number of iterations liblinear is allowed to do */
inline void set_max_iterations(int32_t max_iter=1000)
{
max_iterations=max_iter;
}
/** set the linear term for qp */
void set_linear_term(const SGVector<float64_t> linear_term);
/** get the linear term for qp */
SGVector<float64_t> get_linear_term();
/** set the linear term for qp */
void init_linear_term();
protected:
/** train linear SVM classifier
*
* @param data training data (parameter can be avoided if distance or
* kernel-based classifiers are used and distance/kernels are
* initialized with train data)
*
* @return whether training was successful
*/
virtual bool train_machine(CFeatures* data=NULL);
private:
/** set up parameters */
void init();
void train_one(const liblinear_problem *prob, const liblinear_parameter *param, double Cp, double Cn);
void solve_l2r_l1l2_svc(
const liblinear_problem *prob, double eps, double Cp, double Cn, LIBLINEAR_SOLVER_TYPE st);
void solve_l1r_l2_svc(liblinear_problem *prob_col, double eps, double Cp, double Cn);
void solve_l1r_lr(const liblinear_problem *prob_col, double eps, double Cp, double Cn);
void solve_l2r_lr_dual(const liblinear_problem *prob, double eps, double Cp, double Cn);
protected:
/** C1 */
float64_t C1;
/** C2 */
float64_t C2;
/** if bias shall be used */
bool use_bias;
/** epsilon */
float64_t epsilon;
/** maximum number of iterations */
int32_t max_iterations;
/** precomputed linear term */
SGVector<float64_t> m_linear_term;
/** solver type */
LIBLINEAR_SOLVER_TYPE liblinear_solver_type;
};
} /* namespace shogun */
#endif //_LIBLINEAR_H___
|