/usr/include/shogun/classifier/PluginEstimate.h is in libshogun-dev 3.2.0-7.3build4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 | /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Written (W) 1999-2009 Soeren Sonnenburg
* Copyright (C) 1999-2009 Fraunhofer Institute FIRST and Max-Planck-Society
*/
#ifndef _PLUGINESTIMATE_H___
#define _PLUGINESTIMATE_H___
#include <shogun/machine/Machine.h>
#include <shogun/features/StringFeatures.h>
#include <shogun/labels/BinaryLabels.h>
#include <shogun/distributions/LinearHMM.h>
namespace shogun
{
/** @brief class PluginEstimate
*
* The class PluginEstimate takes as input two probabilistic models (of type
* CLinearHMM, even though general models are possible ) and classifies
* examples according to the rule
*
* \f[
* f({\bf x})= \log(\mbox{Pr}({\bf x}|\theta_+)) - \log(\mbox{Pr}({\bf x}|\theta_-))
* \f]
*
* \sa CLinearHMM
* \sa CDistribution
* */
class CPluginEstimate: public CMachine
{
public:
/** problem type */
MACHINE_PROBLEM_TYPE(PT_BINARY);
/** default constructor
* @param pos_pseudo pseudo for positive model
* @param neg_pseudo pseudo for negative model
*/
CPluginEstimate(float64_t pos_pseudo=1e-10, float64_t neg_pseudo=1e-10);
virtual ~CPluginEstimate();
/** classify objects
*
* @param data (test)data to be classified
* @return classified labels
*/
virtual CBinaryLabels* apply_binary(CFeatures* data=NULL);
/** set features
*
* @param feat features to set
*/
virtual void set_features(CStringFeatures<uint16_t>* feat)
{
SG_REF(feat);
SG_UNREF(features);
features=feat;
}
/** get features
*
* @return features
*/
virtual CStringFeatures<uint16_t>* get_features() { SG_REF(features); return features; }
/// classify the test feature vector indexed by vec_idx
float64_t apply_one(int32_t vec_idx);
/** obsolete posterior log odds
*
* @param vector vector
* @param len len
* @return something floaty
*/
inline float64_t posterior_log_odds_obsolete(
uint16_t* vector, int32_t len)
{
return pos_model->get_log_likelihood_example(vector, len) - neg_model->get_log_likelihood_example(vector, len);
}
/** get log odds parameter-wise
*
* @param obs observation
* @param position position
* @return log odd at position
*/
inline float64_t get_parameterwise_log_odds(
uint16_t obs, int32_t position)
{
return pos_model->get_positional_log_parameter(obs, position) - neg_model->get_positional_log_parameter(obs, position);
}
/** get obsolete positive log derivative
*
* @param obs observation
* @param pos position
* @return positive log derivative
*/
inline float64_t log_derivative_pos_obsolete(uint16_t obs, int32_t pos)
{
return pos_model->get_log_derivative_obsolete(obs, pos);
}
/** get obsolete negative log derivative
*
* @param obs observation
* @param pos position
* @return negative log derivative
*/
inline float64_t log_derivative_neg_obsolete(uint16_t obs, int32_t pos)
{
return neg_model->get_log_derivative_obsolete(obs, pos);
}
/** get model parameters
*
* @param pos_params parameters of positive model
* @param neg_params parameters of negative model
* @param seq_length sequence length
* @param num_symbols numbe of symbols
* @return if operation was successful
*/
inline bool get_model_params(
float64_t*& pos_params, float64_t*& neg_params,
int32_t &seq_length, int32_t &num_symbols)
{
if ((!pos_model) || (!neg_model))
{
SG_ERROR("no model available\n")
return false;
}
SGVector<float64_t> log_pos_trans = pos_model->get_log_transition_probs();
pos_params = log_pos_trans.vector;
SGVector<float64_t> log_neg_trans = neg_model->get_log_transition_probs();
neg_params = log_neg_trans.vector;
seq_length = pos_model->get_sequence_length();
num_symbols = pos_model->get_num_symbols();
ASSERT(pos_model->get_num_model_parameters()==neg_model->get_num_model_parameters())
ASSERT(pos_model->get_num_symbols()==neg_model->get_num_symbols())
return true;
}
/** set model parameters
* @param pos_params parameters of positive model
* @param neg_params parameters of negative model
* @param seq_length sequence length
* @param num_symbols numbe of symbols
*/
inline void set_model_params(
float64_t* pos_params, float64_t* neg_params,
int32_t seq_length, int32_t num_symbols)
{
int32_t num_params;
SG_UNREF(pos_model);
pos_model=new CLinearHMM(seq_length, num_symbols);
SG_REF(pos_model);
SG_UNREF(neg_model);
neg_model=new CLinearHMM(seq_length, num_symbols);
SG_REF(neg_model);
num_params=pos_model->get_num_model_parameters();
ASSERT(seq_length*num_symbols==num_params)
ASSERT(num_params==neg_model->get_num_model_parameters())
pos_model->set_log_transition_probs(SGVector<float64_t>(pos_params, num_params));
neg_model->set_log_transition_probs(SGVector<float64_t>(neg_params, num_params));
}
/** get number of parameters
*
* @return number of parameters
*/
inline int32_t get_num_params()
{
return pos_model->get_num_model_parameters()+neg_model->get_num_model_parameters();
}
/** check models
*
* @return if one of the two models is invalid
*/
inline bool check_models()
{
return ( (pos_model!=NULL) && (neg_model!=NULL) );
}
/** @return object name */
virtual const char* get_name() const { return "PluginEstimate"; }
protected:
/** train plugin estimate classifier
*
* @param data training data (parameter can be avoided if distance or
* kernel-based classifiers are used and distance/kernels are
* initialized with train data)
*
* @return whether training was successful
*/
virtual bool train_machine(CFeatures* data=NULL);
protected:
/** pseudo count for positive class */
float64_t m_pos_pseudo;
/** pseudo count for negative class */
float64_t m_neg_pseudo;
/** positive model */
CLinearHMM* pos_model;
/** negative model */
CLinearHMM* neg_model;
/** features */
CStringFeatures<uint16_t>* features;
};
}
#endif
|