/usr/include/shogun/classifier/GaussianProcessBinaryClassification.h is in libshogun-dev 3.2.0-7.3build4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114  | /*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Written (W) 2013 Roman Votyakov
 */
#ifndef _GAUSSIANPROCESSBINARYCLASSIFICATION_H_
#define _GAUSSIANPROCESSBINARYCLASSIFICATION_H_
#include <shogun/lib/config.h>
#ifdef HAVE_EIGEN3
#include <shogun/machine/GaussianProcessMachine.h>
namespace shogun
{
/** @brief Class GaussianProcessBinaryClassification implements binary
 * classification based on Gaussian Processes.
 */
class CGaussianProcessBinaryClassification : public CGaussianProcessMachine
{
public:
	/** problem type */
	MACHINE_PROBLEM_TYPE(PT_BINARY);
	/** default constructor */
	CGaussianProcessBinaryClassification();
	/** constructor
	 *
	 * @param method inference method
	 */
	CGaussianProcessBinaryClassification(CInferenceMethod* method);
	virtual ~CGaussianProcessBinaryClassification();
	/** apply machine to data in means of binary classification problem
	 *
	 * @param data (test) data to be classified
	 *
	 * @return classified labels
	 */
	virtual CBinaryLabels* apply_binary(CFeatures* data=NULL);
	/** returns a vector of of the posterior predictive means
	 *
	 * @param data (test) data to be classified
	 *
	 * @return mean vector
	 */
	SGVector<float64_t> get_mean_vector(CFeatures* data);
	/** returns a vector of the posterior predictive variances
	 *
	 * @param data (test) data to be classified
	 *
	 * @return variance vector
	 */
	SGVector<float64_t> get_variance_vector(CFeatures* data);
	/** returns probabilities \f$p(y_*=1)\f$ for each (test) feature \f$x_*\f$
	 *
	 * @param data (test) data to be classified
	 *
	 * @return vector of probabilities
	 */
	SGVector<float64_t> get_probabilities(CFeatures* data);
	/** get classifier type
	 *
	 * @return classifier type GAUSSIANPROCESSBINARY
	 */
	virtual EMachineType get_classifier_type()
	{
		return CT_GAUSSIANPROCESSBINARY;
	}
	/** return name of the classifier
	 *
	 * @return name GaussianProcessBinaryClassification
	 */
	virtual const char* get_name() const
	{
		return "GaussianProcessBinaryClassification";
	}
protected:
	/** train classifier
	 *
	 * @param data training data
	 *
	 * @return whether training was successful
	 */
	virtual bool train_machine(CFeatures* data=NULL);
	/** check whether training labels are valid for classification
	 *
	 * @param lab training labels
	 *
	 * @return whether training labels are valid for classification
	 */
	virtual bool is_label_valid(CLabels *lab) const
	{
		return (lab->get_label_type()==LT_BINARY);
	}
};
}
#endif /* HAVE_EIGEN3 */
#endif /* _GAUSSIANPROCESSCLASSIFICATION_H_ */
 |