This file is indexed.

/usr/include/shark/Statistics/Statistics.h is in libshark-dev 3.0.1+ds1-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
/*!
 * 
 *
 * \brief       Calculate statistics given a range of values.
 * 
 * 
 *
 * \author     O.Krause
 * \date        2015
 *
 *
 * \par Copyright 1995-2015 Shark Development Team
 * 
 * <BR><HR>
 * This file is part of Shark.
 * <http://image.diku.dk/shark/>
 * 
 * Shark is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published 
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * Shark is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with Shark.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
#ifndef SHARK_STATISTICS_H
#define SHARK_STATISTICS_H


//for vector algebra
#include <shark/LinAlg/Base.h>

//handling of missing values
#include <limits>
#include <boost/math/special_functions/fpclassify.hpp>

//for quantiles
#include <boost/range/algorithm/nth_element.hpp>


//for the result table
#include <string>
#include <map>
#include <iterator>
#include <boost/serialization/string.hpp>
#include <boost/serialization/map.hpp>
#include <boost/serialization/vector.hpp>

namespace shark {
namespace statistics{
	
inline double missingValue(){
	return std::numeric_limits<double>::quiet_NaN();//missing values are a non-signaling NaN
}

inline bool isMissing(double value){
	return boost::math::isnan(value);//there is no portable way to distinguish the different types of NaN
}
	
///\brief Base class for all Statistic Objects to be used with Statistics	
class BaseStatisticsObject{
public:
	virtual std::string name() const=0;
	virtual ~BaseStatisticsObject(){}
	virtual RealVector statistics(std::vector<RealVector> const& points)const=0;
};

///\brief for a vector of points computes for every dimension the fraction of missing values
class FractionMissing:public BaseStatisticsObject{
public:
	std::string name() const{
		return "Missing";
	}
	RealVector statistics(std::vector<RealVector> const& points)const{
		std::size_t N = points.size();
		RealVector missing(points[0].size(),0.0);
		for(std::size_t i  = 0; i != N;++i){
			for(std::size_t j = 0; j != missing.size(); ++j){
				if(!isMissing(points[i](j)))continue;
				missing(j) += 1.0;
			}
		}
		missing /= N;
		return missing;
	}
};

///\brief For a vector of points computes for every dimension the mean
class Mean:public BaseStatisticsObject{
public:
	std::string name() const{
		return "Mean";
	}
	RealVector statistics(std::vector<RealVector> const& points)const{
		std::size_t N = points.size();
		RealVector sum(points[0].size(),0.0);
		UIntVector numSamples(points[0].size(),0);
		for(std::size_t i  = 0; i != N;++i){
			for(std::size_t j = 0; j != sum.size(); ++j){
				if(isMissing(points[i](j)))continue;
				sum(j) += points[i](j);
				++numSamples(j);
			}
		}
		//calculate mean. if the number of non-missing points was 0, return missingValue() for that dimension
		return safe_div(sum,numSamples,missingValue());
	}
};

///\brief For a vector of points computes for every dimension the variance
class Variance:public BaseStatisticsObject{
public:
	std::string name() const{
		return "Variance";
	}
	RealVector statistics(std::vector<RealVector> const& points)const{
		std::size_t N = points.size();
		Mean m;
		RealVector mean = m.statistics(points);
		RealVector variance(mean.size(),0.0);
		UIntVector numSamples(points[0].size(),0);
		for(std::size_t i  = 0; i != N;++i){
			for(std::size_t j = 0; j != mean.size(); ++j){
				if(isMissing(points[i](j)))continue;
				variance(j) += sqr(points[i](j)-mean(j));
				++numSamples(j);
			}
		}
		//calculate biased variance. if the number of non-missing points was 0, return missingValue() for that dimension
		return safe_div(variance,numSamples,missingValue());
	}
};

//Quantiles, Median, Lower-Upper
///\brief For a vector of points computes for every dimension the p-quantile
class Quantile:public BaseStatisticsObject{
public:
	std::string name() const{
		return boost::lexical_cast<std::string>(m_quantile)+"-Quantile";
	}
	Quantile(double quantile):m_quantile(quantile){}
	RealVector statistics(std::vector<RealVector> const& points)const{
		std::size_t N = points.size();
		RealVector quantiles(points[0].size(),missingValue());
		for(std::size_t j = 0; j != quantiles.size(); ++j){
			//get all non-missing values of the j-th dimension
			std::vector<double> values;
			for(std::size_t i  = 0; i != N;++i){
				if(isMissing(points[i](j)))continue;
				values.push_back(points[i](j));
			}
			if(values.size() == 0) continue;//no values-> missing value
			
			//compute quantile of j-th dimension
			std::size_t element = std::size_t(values.size()*m_quantile);
			std::vector<double>::iterator pos= values.begin()+element;
			boost::nth_element(values,pos);
			quantiles(j) = *pos;
		}
		return quantiles;
	}
private:
	double m_quantile;
};

///\brief For a vector of points computes for every dimension the median
class Median:public Quantile{
public:
	std::string name() const{
		return "Median";
	}
	Median():Quantile(0.5){}
};

///\brief For a vector of points computes for every dimension the 25%-quantile
class LowerQuantile:public Quantile{
public:
	LowerQuantile():Quantile(0.25){}
};
///\brief For a vector of points computes for every dimension the 75%-quantile
class UpperQuantile:public Quantile{
public:
	UpperQuantile():Quantile(0.75){}
};


///\brief Stores results of a running experiment
///
/// This is a simple three dimensional table with the dimensions. Experiments
/// are thought of having a varied parameter (for example the algorithm names when
/// several algorithms are compared) and for each parameter a set of vector valued points
/// is stored - one vector for each trial of the experiment for a given parameter.
/// It is posible to give every parameter and the whole table a name which adds meta
/// information, for example to generate outputs.
template<class Parameter>
class ResultTable{
public:
	typedef typename std::map<Parameter, std::vector<RealVector> >::const_iterator const_iterator;

	ResultTable(std::size_t numDimensions, std::string const& parameterName="unnamed")
	:m_dimensionNames(numDimensions,"unnamed"),m_parameterName(parameterName){}

	std::string const& parameterName()const{
		return m_parameterName;
	}		
	
	void setDimensionName(std::size_t i, std::string const& name){
		m_dimensionNames[i]=name;
	}
	
	std::string const& dimensionName(std::size_t i)const{
		return m_dimensionNames[i];
	}
	
	std::size_t numDimensions()const{
		return m_dimensionNames.size();
	}
	
	void update(Parameter const& parameter, RealVector const& point){
		SIZE_CHECK(point.size() == numDimensions());
		m_results[parameter].push_back(point);
	}
	
	void update(Parameter const& parameter, double value){
		RealVector point(1,value);
		update(parameter, point);
	}
	
	void update(Parameter const& parameter, double value1, double value2){
		RealVector point(2);
		point(0)=value1;
		point(1)=value2;
		update(parameter, point);
	}
	
	void update(Parameter const& parameter, double value1, double value2,double value3){
		RealVector point(3);
		point(0)=value1;
		point(1)=value2;
		point(2)=value3;
		update(parameter, point);
	}
	
	std::vector<RealVector>const& operator[](Parameter const& param)const{
		return m_results.find(param)->second;
	}
	
	const_iterator begin()const{
		return m_results.begin();
	}
	const_iterator end()const{
		return m_results.end();
	}
	
	std::size_t numParams()const{
		return m_results.size();
	}
	
	Parameter const& parameterValue(std::size_t i)const{
		const_iterator pos = begin();
		std::advance(pos,i);
		return pos->first;
	}
	
	
	template<class Archive>
	void serialize(Archive &ar, const unsigned int file_version) {
		ar & m_dimensionNames;
		ar & m_parameterName;
		ar & m_results;
		(void) file_version;//prevent warning
	}
	
private:
	std::vector<std::string> m_dimensionNames;
	std::string m_parameterName;
	std::map<Parameter, std::vector<RealVector> > m_results; 
};

///\brief Generates Statistics over the results of an experiment
///
/// Given the results of an experiment stored in a ResultsTable, computes
/// several tatistics for each variable.
template<class Parameter>
struct Statistics {
public:
	typedef typename std::map<Parameter, std::map<std::string,RealVector> >::const_iterator const_iterator;
	Statistics(ResultTable<Parameter> const* table):m_resultsTable(table){}
	
	void addStatistic(std::string const& statisticName, BaseStatisticsObject const& object){
		typedef typename ResultTable<Parameter>::const_iterator iterator;
		iterator end = m_resultsTable->end();
		for(iterator pos=m_resultsTable->begin(); pos != end; ++pos){
			m_statistics[pos->first][statisticName] = object.statistics(pos->second);
		}
		m_statisticNames.push_back(statisticName);
	}
	
	void addStatistic(BaseStatisticsObject const& object){
		addStatistic(object.name(),object);
	}
	
	std::map<std::string,RealVector> const& operator[](Parameter const& parameter)const{
		return m_statistics.find(parameter)->second;
	}
	
	const_iterator begin()const{
		return m_statistics.begin();
	}
	const_iterator end()const{
		return m_statistics.end();
	}
	
	//information about the parameter of the experiments
	std::string const& parameterName()const{
		return m_resultsTable->parameterName();
	}
	
	std::size_t numParams()const{
		return m_resultsTable->numParams();
	}
	
	Parameter const& parameterValue(std::size_t i)const{
		return m_resultsTable->parameterValue(i);
	}
	
	//information about the names of the dimensions
	std::size_t numDimensions()const{
		return m_resultsTable->numDimensions();
	}
	
	std::string const& dimensionName(std::size_t i)const{
		return m_resultsTable->dimensionName(i);
	}
	
	//information about the statistics
	std::size_t numStatistics()const{
		return m_statisticNames.size();
	}
	std::string const& statisticName(std::size_t i)const{
		return m_statisticNames[i];
	}
private:
	std::vector<std::string> m_statisticNames;
	ResultTable<Parameter> const* m_resultsTable;
	std::map<Parameter, std::map<std::string,RealVector> > m_statistics;
};

template<class Parameter>
void printCSV(Statistics<Parameter> const& statistics){
	//first print a legend
	std::cout<<"# "<<statistics.parameterName();
	for(std::size_t i = 0; i != statistics.numStatistics(); ++i){
		for(std::size_t j = 0; j != statistics.numDimensions(); ++j){
			std::cout<<" "<<statistics.statisticName(i)<<"-"<<statistics.dimensionName(j);
		}
	}
	std::cout<<"\n";
	
	//print results parameter by parameter
	for(std::size_t k = 0; k != statistics.numParams(); ++k){
		Parameter param=statistics.parameterValue(k);
		std::map<std::string,RealVector> paramResults=statistics[param];
		std::cout<<param;
		for(std::size_t i = 0; i != statistics.numStatistics(); ++i){
			for(std::size_t j = 0; j != statistics.numDimensions(); ++j){
				std::cout<<" "<<paramResults[statistics.statisticName(i)](j);
			}
		}
		std::cout<<"\n";
	}
}

}}
#endif // SHARK_STATISTICS_H