This file is indexed.

/usr/include/shark/Rng/HyperGeometric.h is in libshark-dev 3.0.1+ds1-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
/*!
 * 
 *
 * \brief       Hypergeometric distribution.
 * 
 * 
 *
 * \author      O. Krause
 * \date        2010-01-01
 *
 *
 * \par Copyright 1995-2015 Shark Development Team
 * 
 * <BR><HR>
 * This file is part of Shark.
 * <http://image.diku.dk/shark/>
 * 
 * Shark is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published 
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * Shark is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with Shark.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
#ifndef SHARK_RNG_HYPERGEOMETRIC_H
#define SHARK_RNG_HYPERGEOMETRIC_H




#include <cmath>
#include <boost/random/uniform_01.hpp>

#ifndef BOOST_RANDOM_NO_STREAM_OPERATORS
#include <iostream>
#endif

namespace shark{
/// \brief Hypergeometric distribution.
	template<class IntType=int,class RealType = double>
	class HyperGeometric_distribution
	{
	public:
		typedef RealType input_type;
		typedef IntType result_type;

		explicit HyperGeometric_distribution(RealType mean,RealType variance)
			:mean_(mean),variance_(variance)
		{
			if (mean == 0)
			{
				p = 0.;
			}
			else
			{
				double z = variance / (mean * mean);
				p = (1 - std::sqrt((z - 1) / (z + 1))) / 2;

				if (p < 0.) p = 0.;
			}
		}

		RealType mean() const
		{
			return mean_;
		}
		RealType variance()const
		{
			return variance_;
		}

		void reset() { }

		template<class Engine>
		result_type operator()(Engine& eng)
		{
			double uni1 =  boost::uniform_01<RealType>(eng);
			double uni2 =  boost::uniform_01<RealType>(eng);
			return -mean_ * ::log( uni1) / (2 *( uni2 > p? 1 - p : p));
		}

#ifndef BOOST_RANDOM_NO_STREAM_OPERATORS
		template<class CharT, class Traits>
		friend std::basic_ostream<CharT,Traits>&
			operator<<(std::basic_ostream<CharT,Traits>& os, const HyperGeometric_distribution& d)
		{
			os << d.mean_;
			os << d.variance_;
			return os;
		}

		template<class CharT, class Traits>
		friend std::basic_istream<CharT,Traits>&
			operator>>(std::basic_istream<CharT,Traits>& is, HyperGeometric_distribution& d)
		{
			is >> d.mean_;
			is >> d.variance_;
			return is;
		}
#endif
	private:
		RealType mean_;
		RealType variance_;
		RealType p;
	};

	/**
	* \brief Random variable with a hypergeometric distribution.
	*/
	template<typename RngType = shark::DefaultRngType>
	class HyperGeometric:public boost::variate_generator<RngType*,HyperGeometric_distribution<> > {
	private:
		typedef boost::variate_generator<RngType*,HyperGeometric_distribution<> > Base;
	public:

		HyperGeometric( RngType & rng, double k=1, double theta=1 )
			:Base(&rng,HyperGeometric_distribution<>(k,theta))
		{}

		using Base::operator();

		double operator()(double k,double theta)
		{
			HyperGeometric_distribution<> dist(k,theta);
			return dist(Base::engine());
		}

		double mean()const
		{
			return Base::distribution().mean();
		}
		double variance()const
		{
			return Base::distribution().variance();
		}
		void mean(double newMean)
		{
			Base::distribution()=HyperGeometric_distribution<>(newMean,variance());
		}
		void variance(double newVariance)
		{
			Base::distribution()=HyperGeometric_distribution<>(mean(),newVariance);
		}

		double p(double x)const
		{
			return 0.0;///!!!
		}

	};
}
#endif