/usr/include/shark/Rng/GlobalRng.h is in libshark-dev 3.0.1+ds1-2ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 | /*!
*
*
* \brief This class subsumes several often used random number generators.
*
* This class offers convenience functions to generate numbers using a global random number generator from the following distributions:
*
* <ul>
* <li>Bernoulli with name \em coinToss
* <li>DiscreteUniform with name \em discrete
* <li>Uniform with name \em uni
* <li>Normal with name \em gauss
* <li>Cauchy with name \em cauchy
* <li>Geometric with name \em geom
* <li>DiffGeometric with name \em diffGeom
* <li>Poisson with name \em poisson
* <li>Gamma with name \em gam
* <li>Dirichlet with name \em dir
* </ul>
*
* Additionally this class offers a global random number generator. The default
* is the Mersenne Twister with a cycle length of $2^19937$. This generator can be used to construct additional
* distributions. The seed can be set via Rng::seed .
*
* \par Example
* \code
* #include "shark/Rng/GlobalRng.h"
*
* void main()
* {
*
* // Set seed for all subsumed random number generators:
* Rng::seed( 1234 );
*
* // Get random "numbers" for all subsumed random number generators:
* bool rn1 = Rng::coinToss( );
* long rn2 = Rng::discrete( );
* double rn3 = Rng::uni( );
* double rn4 = Rng::gauss( );
* double rn5 = Rng::cauchy( );
* long rn6 = Rng::geom( );
* long rn7 = Rng::diffGeom( );
*
* // Output of random numbers:
* cout << "Bernoulli trial = " << rn1 << endl;
* cout << "Discrete distribution number = " << rn2 << endl;
* cout << "Uniform distribution number = " << rn3 << endl;
* cout << "Normal distribution number = " << rn4 << endl;
* cout << "Cauchy distribution number = " << rn5 << endl;
* cout << "Geometric distribution number = " << rn6 << endl;
* cout << "Differential Geometric distribution number = " << rn7 << endl;
* }
* \endcode
*
*
*
* \author -
* \date -
*
*
* \par Copyright 1995-2015 Shark Development Team
*
* <BR><HR>
* This file is part of Shark.
* <http://image.diku.dk/shark/>
*
* Shark is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Shark is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Shark. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef SHARK_RNG_GLOBALRNG_H
#define SHARK_RNG_GLOBALRNG_H
#include <shark/Rng/Rng.h>
#include <shark/Rng/Bernoulli.h>
#include <shark/Rng/Binomial.h>
#include <shark/Rng/Cauchy.h>
#include <shark/Rng/DiffGeometric.h>
#include <shark/Rng/Dirichlet.h>
#include <shark/Rng/DiscreteUniform.h>
#include <shark/Rng/Erlang.h>
#include <shark/Rng/Gamma.h>
#include <shark/Rng/Geometric.h>
#include <shark/Rng/HyperGeometric.h>
#include <shark/Rng/LogNormal.h>
#include <shark/Rng/NegExponential.h>
#include <shark/Rng/Normal.h>
#include <shark/Rng/Poisson.h>
#include <shark/Rng/Uniform.h>
#include <shark/Rng/Weibull.h>
#include <shark/Rng/Entropy.h>
#include <shark/Rng/KullbackLeiberDivergence.h>
#include <boost/random.hpp>
#include <vector>
namespace shark {
/**
* \brief Collection of different variate generators for different distributions.
*
* \tparam RNG The underlying random number generator, needs to model the boost rng concept.
*/
template<typename RNG>
class BaseRng {
public:
typedef RNG rng_type;
typedef BaseRng< rng_type> this_type;
//! The global random number generator used by all distributions
static rng_type globalRng;
//! creates a bernoulli distributed number with propability "p"
static inline bool coinToss( double p = 0.5 ) {
Bernoulli< rng_type > coin(globalRng,p);
return coin();
}
//! creates a discrete uniform distributed number in the range from "min" to "max"
static std::size_t discrete(std::size_t min=0,std::size_t max=1) {
if(min == max) return min;
DiscreteUniform< rng_type > disc(globalRng,min,max);
return disc( min, max );
}
//! creates a uniform distributed number in the range from "min" to "max"
static double uni(double min=0.0,double max=1.0) {
if(min == max) return min;
Uniform< rng_type > uni( globalRng, min, max );
return uni();
}
//! creates a log-normal distributed number with location "location" and scale "scale"
static double logNormal(double location=0.0,double scale=1.0) {
LogNormal< rng_type > logNormal(globalRng,location,scale);
return logNormal();
}
//! creates a normal distributed number with mean "mean" and variance "sigma"
static double gauss(double mean=0.0,double sigma=1.0) {
Normal< rng_type > normal(globalRng,mean,sigma);
return normal();
}
//! creates a cauchy distributed number
static double cauchy(double median=0.0,double gamma=1.0) {
Cauchy< rng_type > cauchy(globalRng,median,gamma);
return cauchy();
}
//! creates a number using the geometric distribution and propability "p"
static int geom(double p=0.0) {
Geometric< rng_type > rng(globalRng,p);
return rng();
}
//! creates a number using the diff-geometric distribution with mean "mean"
static int diffGeom(double mean = 0.5) {
DiffGeometric< rng_type > diff(globalRng,mean);
return diff();
}
//! creates a poission distributed number with mean "mean"
static double poisson(double mean=0.01) {
Poisson< rng_type > poisson(globalRng,mean);
return poisson();
}
//! creates a number using the gamma distribution
static double gam(double k,double theta) {
Gamma< rng_type > gamma(globalRng,k,theta);
return cauchy();
}
//! creates a dirichlet distributed number
static std::vector<double> dir(size_t n,double alpha) {
Dirichlet< rng_type > dist(globalRng,n,alpha);
return dist();
}
//! creates a dirichlet distributed number
static std::vector<double> dir(const std::vector<double>& alphas) {
Dirichlet< this_type > dist(globalRng,alphas);
return dist();
}
//! Sets the seed for all random number generators to "s".
static void seed( typename rng_type::result_type s ) {
globalRng.seed( s );
}
};
template<class Rng>
typename BaseRng<Rng>::rng_type BaseRng<Rng>::globalRng = typename BaseRng<Rng>::rng_type();
#define ANNOUNCE_SHARK_RNG( boost_rng_type, shark_rng_name )\
typedef BaseRng< boost_rng_type > shark_rng_name; \
ANNOUNCE_SHARK_RNG( shark::FastRngType, FastRng );
ANNOUNCE_SHARK_RNG( shark::DefaultRngType, Rng );
/*
typedef BaseRng< boost::rand48 > FastRng; FastRng::rng_type FastRng::globalRng = FastRng::rng_type();
typedef BaseRng< boost::mt19937 > Rng; Rng::rng_type Rng::globalRng = Rng::rng_type();*/
}
#endif
|