This file is indexed.

/usr/include/shark/Rng/Dirichlet.h is in libshark-dev 3.0.1+ds1-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
/*!
 * 
 *
 * \brief       Implements a dirichlet distribution.
 * 
 * 
 *
 * \author      O. Krause
 * \date        2010-01-01
 *
 *
 * \par Copyright 1995-2015 Shark Development Team
 * 
 * <BR><HR>
 * This file is part of Shark.
 * <http://image.diku.dk/shark/>
 * 
 * Shark is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published 
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * Shark is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with Shark.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
#ifndef SHARK_RNG_DIRICHLET_H
#define SHARK_RNG_DIRICHLET_H

#include <shark/Rng/Gamma.h>
#include <shark/Rng/Rng.h>


#include <boost/math/special_functions.hpp>
#include <boost/random.hpp>

#include <cmath>
#include <vector>

#ifndef BOOST_RANDOM_NO_STREAM_OPERATORS
#include <iostream>
#endif

namespace shark{

	//! \brief Dirichlet distribution
	template<class RealType=double>
	class Dirichlet_distribution
	{
	public:
		typedef RealType input_type;
		typedef std::vector<RealType> result_type;

		explicit Dirichlet_distribution(size_t n=3,RealType alpha=1)
			:alphas_(n,alpha)
		{}
		explicit Dirichlet_distribution(const std::vector<RealType>& alphas)
			:alphas_(alphas)
		{}

		const std::vector<RealType>& alphas() const
		{
			return alphas_;
		}

		void reset() { }

		template<class Engine>
		result_type operator()(Engine& eng)const
		{
			unsigned n = alphas_.size();
			RealType sum = 0;
			std::vector<double> x;
			x.resize(n);
			for(size_t i=0; i<n; i++)
			{
				Gamma_distribution<> gamma(alphas_[i], 1.);
				x[i] = gamma(eng);
				sum += x[i];
			}
			for(size_t i=0; i<n; i++)
				x[i]/= sum;
			return x;
		}

#ifndef BOOST_RANDOM_NO_STREAM_OPERATORS
		template<class CharT, class Traits>
		friend std::basic_ostream<CharT,Traits>&
			operator<<(std::basic_ostream<CharT,Traits>& os, const Dirichlet_distribution& d)
		{
			os << d.alphas.size();
			for(int i=0;i!=d.alphas_.size();++i)
				os << d.alphas_[i];
			return os;
		}

		template<class CharT, class Traits>
		friend std::basic_istream<CharT,Traits>&
			operator>>(std::basic_istream<CharT,Traits>& is, Dirichlet_distribution& d)
		{
			size_t size;
			is >> size;
			for(int i=0;i!=size;++i)
			{
				RealType element;
				is >> element;
				d.alphas_.push_back(element);
			}
			return is;
		}
#endif
	private:
		std::vector<RealType> alphas_;
	};

	/**
	* \brief Implements a Dirichlet distribution.
	* \tparam RngType The underlying generator type.
	*/
	template<typename RngType = shark::DefaultRngType>
	class Dirichlet:public boost::variate_generator<RngType*,Dirichlet_distribution<> >
	{
	private:
		typedef boost::variate_generator<RngType*,Dirichlet_distribution<> > Base;
	public:

		/**
		* \brief C'tor, associates the distribution with the given generator.
		* \param [in,out] rng Random number generator. 
		* \param [in] n Cardinality.
		* \param [in] alpha Support value.
		*/
		explicit Dirichlet(RngType& rng,size_t n=3,double alpha=1)
			:Base(&rng,Dirichlet_distribution<>(n,alpha))
		{}

		/**
		* \brief C'tor, associates the distribution with the given generator.
		* \param [in,out] rng Random number generator. 
		* \param [in] alphas Support values.
		*/
		explicit Dirichlet(RngType& rng,const std::vector<double>& alphas)
			:Base(&rng,Dirichlet_distribution<>(alphas))
		{}

		/** \brief Injects the default sampling operator. */
		using Base::operator();

		/**
		* \brief Creates a temporary instance of the distribution and samples it.
		* \param [in] n Cardinality.
		* \param [in] alpha Support value.
		*/
		std::vector<double> operator()(size_t n,double alpha) {
			Dirichlet_distribution<> dist(n,alpha);
			return dist(Base::engine());
		}

		/**
		* \brief Creates a temporary instance of the distribution and samples it.
		* \param [in] alphas Support values.
		*/
		std::vector<double> operator()(const std::vector<double> & alphas) {
			Dirichlet_distribution<> dist(alphas);
			return dist(Base::engine());
		}

		/**
		* \brief Accesses the support values.
		*/
		const std::vector<double> alphas()const {
			return Base::distribution().alphas();
		}

		/**
		* \brief Adjusts the support values.
		* \param [in] newAlphas New support values.
		*/
		void alphas(const std::vector<double>& newAlphas) {
			Base::distribution()=Dirichlet_distribution<>(newAlphas);
		}

		/**
		* \brief Adjusts the support values.
		* \param [in] n New cardinality.
		* \param [in] alphas Support value.
		*/
		void alphas(size_t n,double alphas) {
			Base::distribution()=Dirichlet_distribution<>(n,alphas);
		}

		/**
		* \brief Calculates the probability of the observation x.
		*/
		double p(const std::vector<double> &x)const
		{
			double p = 1.;
			double sum = 0.;
			for(int i=0; i<alphas().size(); i++)
			{
				p *= pow(x[i], alphas()[i]-1) / boost::math::tgamma(alphas()[i]);
				sum += alphas()[i];
			}
			return p * boost::math::tgamma(sum);
		}

	};
}
#endif