This file is indexed.

/usr/include/shark/ObjectiveFunctions/ROC.h is in libshark-dev 3.0.1+ds1-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
//===========================================================================
/*!
 * 
 *
 * \brief       ROC
 * 
 * 
 *
 * \author      O.Krause
 * \date        2010-2011
 *
 *
 * \par Copyright 1995-2015 Shark Development Team
 * 
 * <BR><HR>
 * This file is part of Shark.
 * <http://image.diku.dk/shark/>
 * 
 * Shark is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published 
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * Shark is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with Shark.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
//===========================================================================
#ifndef SHARK_OBJECTIVEFUNCTIONS_ROC_H
#define SHARK_OBJECTIVEFUNCTIONS_ROC_H

#include <shark/Core/DLLSupport.h>
#include <shark/Models/AbstractModel.h>
#include <shark/Data/Dataset.h>
#include <vector>
#include <algorithm>

namespace shark {

//!
//! \brief ROC-Curve - false negatives over false positives
//!
//! \par
//! This class provides the ROC curve of a classifier.
//! All time consuming computations are done in the constructor,
//! such that afterwards fast access to specific values of the
//! curve and the equal error rate is possible.
//!
//! \par
//! The ROC class assumes a one dimensional target array and a
//! model producing one dimensional output data. The targets must
//! be the labels 0 and 1 of a binary classification task. The
//! model output is assumed not to be 0 and 1, but real valued
//! instead. Classification in done by thresholding, where
//! different false positive and false negative rates correspond
//! to different thresholds. The ROC curve shows the trade off
//! between the two error types.
//!
class ROC
{
public:
	//! Constructor
	//!
	//! \param  model   model to use for prediction
	//! \param  set     data set with inputs and corresponding binary outputs (0 or 1)
	template<class InputType>
	ROC(AbstractModel<InputType,RealVector>& model,LabeledData<InputType,unsigned int> const& set){
		std::size_t inputs=set.numberOfElements();

		//calculat the number of classes
		std::vector<std::size_t> classes = classSizes(set);
		SIZE_CHECK(classes.size() == 2); //only binary problems allowed!
		
		std::size_t positive = classes[0];
		std::size_t negative = classes[1];
		m_scorePositive.resize(positive);
		m_scoreNegative.resize(negative);

		// compute scores
		std::size_t posPositive = 0;
		std::size_t posNegative = 0;
		
		//calculate the model responses batchwise for the whole set
		for(std::size_t i = 0; i != set.size(); ++i){
			RealMatrix output = model(set.batch(i).input);
			SIZE_CHECK(output.size2() == 1);
			for(std::size_t j = 0; j != size(output); ++j){ 
				double value = output(j,0);
				if (set.batch(i)(j) == 1)
				{
					m_scorePositive[posPositive] = value;
					posPositive++;
				}
				else
				{
					m_scoreNegative[posNegative] = value;
					posNegative++;
				}
			}
		}
		// sort positives and negatives by score
		std::sort(m_scorePositive.begin(), m_scorePositive.end());
		std::sort(m_scoreNegative.begin(), m_scoreNegative.end());
	}

	//! Compute the threshold for given false acceptance rate,
	//! that is, for a given false positive rate.
	//! This threshold, used for classification with the underlying
	//! model, results in the given false acceptance rate.
	SHARK_EXPORT_SYMBOL double threshold(double falseAcceptanceRate)const;

	//! Value of the ROC curve for given false acceptance rate,
	//! that is, for a given false positive rate.
	SHARK_EXPORT_SYMBOL double value(double falseAcceptanceRate)const;

	//! Computes the equal error rate of the classifier
	SHARK_EXPORT_SYMBOL double equalErrorRate()const;

protected:
	//! scores of the positive examples
	std::vector<double> m_scorePositive;

	//! scores of the negative examples
	std::vector<double> m_scoreNegative;
};

}
#endif