This file is indexed.

/usr/include/shark/ObjectiveFunctions/NegativeAUC.h is in libshark-dev 3.0.1+ds1-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
//===========================================================================
/*!
 * 
 *
 * \brief       Functions for measuring the area under the (ROC) curve
 * 
 * 
 *
 * \author      Christian Igel
 * \date        2011
 *
 *
 * \par Copyright 1995-2015 Shark Development Team
 * 
 * <BR><HR>
 * This file is part of Shark.
 * <http://image.diku.dk/shark/>
 * 
 * Shark is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published 
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * Shark is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with Shark.  If not, see <http://www.gnu.org/licenses/>.
 *
 */

#ifndef SHARK_OBJECTIVEFUNCTIONS_NEGATIVE_AUC_H
#define SHARK_OBJECTIVEFUNCTIONS_NEGATIVE_AUC_H


#include <shark/ObjectiveFunctions/AbstractCost.h>
#include <shark/Core/utility/KeyValuePair.h>

namespace shark {
///
/// \brief Negative area under the curve
/// 
/// This class computes the area under the ROC (receiver operating characteristic) curve.
/// It implements the algorithm described in:
/// Tom Fawcett. ROC Graphs: Notes and Practical Considerations for Researchers. 2004
///
/// The area is negated so that optimizing the AUC corresponds to a minimization task. 
///
template<class LabelType = unsigned int, class OutputType = RealVector>
class NegativeAUC : public AbstractCost<LabelType, OutputType>
{
public:
	typedef KeyValuePair< double, LabelType > AUCPair;

	/// Constructor.
	/// \param invert: if set to true, the role of positive and negative class are switched
	NegativeAUC(bool invert = false) {
		m_invert = invert;
	}

	/// \brief From INameable: return the class name.
	std::string name() const
	{ return "NegativeAUC"; }

	/// \brief Computes area under the curve.
  	/// \param target: class label, 0 or 1
	/// \param prediction: prediction by classifier, OutputType-valued vector
	/// \param column: indicates the column of the prediction vector interpreted as probability of positive class
	double eval(Data<LabelType> const& target, Data<OutputType> const& prediction, unsigned int column) const {
		SHARK_CHECK(dataDimension(prediction) > column,"[NegativeAUC::eval] column number too large");

		std::size_t elements = target.numberOfElements();

		unsigned P = 0; // positive examples
		unsigned N = 0; // negative examples
		std::vector<AUCPair> L(elements); // list of predictions and labels

		for(std::size_t i=0; i!= elements; i++) { // build list
			LabelType t = target.element(i);
			// negate predictions if m_invert is set
			if(!m_invert)
				L[i] = AUCPair(prediction.element(i)(column), t);
			else
				L[i] = AUCPair(-prediction.element(i)(column), t);
			// count positive and negative examples
			if(t > 0) 
				P++;
			else 
				N++;
		}    

		std::sort (L.begin(), L.end(),std::greater<AUCPair>() ); // sort in decreasing order

		double   A = 0; // area
		unsigned TP = 0; // true positives
		unsigned FP = 0; // false positives
		unsigned TPPrev = 0; // previous true positives
		unsigned FPPrev = 0; // previous false positives
		double   predictionPrev = -std::numeric_limits<double>::max(); // previous prediction
		for(std::size_t i=0; i != elements; i++)  {
			if(L[i].key != predictionPrev){
				A += trapArea(FP/double(N),FPPrev/double(N),TP/double(P),TPPrev/double(P));
				predictionPrev = L[i].key;
				FPPrev = FP;
				TPPrev = TP;
			}
			if(L[i].value > 0) 
				TP++; // positive example
			else 
				FP++; // negative example
		}
		// deviation from the original algorithm description: A += trapArea(1, FPPrev, 1, TPPrev);
		A += trapArea(FP/double(N), FPPrev/double(N), TP/double(P), TPPrev/double(P));

		//~ A /= double(N*P);
		return -A;
	}

	/// \brief Computes area under the curve. If the prediction vector is
	/// 1-dimensional, the "positive" class is mapped to larger values. If
	/// the prediction vector is 2-dimensional, the second dimension is
	/// viewed as the "positive" class. For higher dimensional vectors, an
	/// exception is thrown. In such a case, the column has to be
	/// explicitly specified as an additional parameter.
	///
	/// \param target: class label, 0 or 1
	/// \param prediction: prediction by classifier, OutputType-valued vector
	double eval(Data<LabelType> const& target, Data<OutputType>  const& prediction) const {
		SHARK_CHECK(prediction.numberOfElements() >= 1,"[NegativeAUC::eval] empty prediction set");

		std::size_t dim = dataDimension(prediction);
		if(dim == 1) 
			return eval(target, prediction, 0);
		else if(dim == 2) 
			return eval(target, prediction, 1);

		throw SHARKEXCEPTION("[NegativeAUC::eval] no default value for column");
		return 0.;
	}


protected:
	double trapArea(double x1, double x2, double y1, double y2) const {
		double base = std::abs(x1-x2);
		double heightAvg = (y1+y2)/2;
		return base * heightAvg;
	}

	bool m_invert;
};

///
/// \brief Negative Wilcoxon-Mann-Whitney statistic 
/// 
/// This class computes the Wilcoxon-Mann-Whitney statistic, which is
/// an unbiased estimate of the area under the ROC curve.
///
/// See, for example:
/// Corinna Cortes, Mehryar Mohri. Confidence Intervals for the Area under the ROC Curve. NIPS, 2004
///
/// The area is negated so that optimizing the AUC corresponds to a minimization task. 
///
template<class LabelType = unsigned int, class OutputType = LabelType>
class NegativeWilcoxonMannWhitneyStatistic : public AbstractCost<LabelType, OutputType>
{
public:
	/// Constructor.
	/// \param invert: if set to true, the role of positive and negative class are switched
	NegativeWilcoxonMannWhitneyStatistic(bool invert = false) {
		m_invert = invert;
	}

	/// \brief From INameable: return the class name.
	std::string name() const
	{ return "NegativeWilcoxonMannWhitneyStatistic"; }

	/// \brief Computes Wilcoxon-Mann-Whitney statistic.
	/// \param target: interpreted as binary class label
	/// \param prediction: interpreted as binary class label
	/// \param column: indicates the column of the prediction vector interpreted as probability of positive class
	double eval(Data<LabelType> const& target, Data<OutputType> const& prediction, unsigned int column) const {
		SHARK_CHECK(prediction(0).size() > column,"[NegativeWilcoxonMannWhitneyStatistic::eval] column number too large");
		std::vector<double> pos, neg;
		for(std::size_t i=0; i<prediction.size(); i++) {
			if(!m_invert){
				if(target(i) > 0) 
					pos.push_back(prediction.element(i)(column));
				else  
					neg.push_back(prediction.element(i)(column));
			}else{
				if(target(i) > 0)
					pos.push_back(-prediction.element(i)(column));
				else
					neg.push_back(-prediction.element(i)(column));
			}
		}
		std::size_t m = pos.size();
		std::size_t n = neg.size();

		std::sort (pos.begin(), pos.end());
		std::sort (neg.begin(), neg.end());

		double A = 0;
		for(std::size_t i = 0, j = 0; i != m; i++) {
			A += j; 
			for(std::size_t j = 0; j != n; j++) {
				if(pos[i] > neg[j]) 
					A++;
				else 
					break;
			}
		}

#ifdef DEBUG
		// most naive implementation 
		double verifyA = 0.;
		for(std::size_t i=0; i<m; i++) {
			for(std::size_t  j=0; j<n; j++) {
				if(pos[i] > neg[j]) verifyA++;
			}
		}
		if (A!=verifyA) {
			throw( shark::Exception( "shark::WilcoxonMannWhitneyStatistic::eval: error in algorithm, efficient and naive implementation do no coincide", __FILE__, __LINE__ ) );
		}
#endif

		return -A / (n*m);
	}

	double eval(Data<LabelType> const& target, Data<OutputType>  const& prediction) const {
		SHARK_CHECK(prediction.numberOfElements() >= 1,"[NegativeAUC::eval] empty prediction set");

		std::size_t dim = dataDimension(prediction);
		if(dim == 1) 
			return eval(target, prediction, 0);
		else if(dim == 2) 
			return eval(target, prediction, 1);
		
		throw SHARKEXCEPTION("[NegativeAUC::eval] no default value for column");
		return 0.;
	}

private:
	bool m_invert;
};


}
#endif