/usr/include/shark/ObjectiveFunctions/NegativeAUC.h is in libshark-dev 3.0.1+ds1-2ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 | //===========================================================================
/*!
*
*
* \brief Functions for measuring the area under the (ROC) curve
*
*
*
* \author Christian Igel
* \date 2011
*
*
* \par Copyright 1995-2015 Shark Development Team
*
* <BR><HR>
* This file is part of Shark.
* <http://image.diku.dk/shark/>
*
* Shark is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Shark is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Shark. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef SHARK_OBJECTIVEFUNCTIONS_NEGATIVE_AUC_H
#define SHARK_OBJECTIVEFUNCTIONS_NEGATIVE_AUC_H
#include <shark/ObjectiveFunctions/AbstractCost.h>
#include <shark/Core/utility/KeyValuePair.h>
namespace shark {
///
/// \brief Negative area under the curve
///
/// This class computes the area under the ROC (receiver operating characteristic) curve.
/// It implements the algorithm described in:
/// Tom Fawcett. ROC Graphs: Notes and Practical Considerations for Researchers. 2004
///
/// The area is negated so that optimizing the AUC corresponds to a minimization task.
///
template<class LabelType = unsigned int, class OutputType = RealVector>
class NegativeAUC : public AbstractCost<LabelType, OutputType>
{
public:
typedef KeyValuePair< double, LabelType > AUCPair;
/// Constructor.
/// \param invert: if set to true, the role of positive and negative class are switched
NegativeAUC(bool invert = false) {
m_invert = invert;
}
/// \brief From INameable: return the class name.
std::string name() const
{ return "NegativeAUC"; }
/// \brief Computes area under the curve.
/// \param target: class label, 0 or 1
/// \param prediction: prediction by classifier, OutputType-valued vector
/// \param column: indicates the column of the prediction vector interpreted as probability of positive class
double eval(Data<LabelType> const& target, Data<OutputType> const& prediction, unsigned int column) const {
SHARK_CHECK(dataDimension(prediction) > column,"[NegativeAUC::eval] column number too large");
std::size_t elements = target.numberOfElements();
unsigned P = 0; // positive examples
unsigned N = 0; // negative examples
std::vector<AUCPair> L(elements); // list of predictions and labels
for(std::size_t i=0; i!= elements; i++) { // build list
LabelType t = target.element(i);
// negate predictions if m_invert is set
if(!m_invert)
L[i] = AUCPair(prediction.element(i)(column), t);
else
L[i] = AUCPair(-prediction.element(i)(column), t);
// count positive and negative examples
if(t > 0)
P++;
else
N++;
}
std::sort (L.begin(), L.end(),std::greater<AUCPair>() ); // sort in decreasing order
double A = 0; // area
unsigned TP = 0; // true positives
unsigned FP = 0; // false positives
unsigned TPPrev = 0; // previous true positives
unsigned FPPrev = 0; // previous false positives
double predictionPrev = -std::numeric_limits<double>::max(); // previous prediction
for(std::size_t i=0; i != elements; i++) {
if(L[i].key != predictionPrev){
A += trapArea(FP/double(N),FPPrev/double(N),TP/double(P),TPPrev/double(P));
predictionPrev = L[i].key;
FPPrev = FP;
TPPrev = TP;
}
if(L[i].value > 0)
TP++; // positive example
else
FP++; // negative example
}
// deviation from the original algorithm description: A += trapArea(1, FPPrev, 1, TPPrev);
A += trapArea(FP/double(N), FPPrev/double(N), TP/double(P), TPPrev/double(P));
//~ A /= double(N*P);
return -A;
}
/// \brief Computes area under the curve. If the prediction vector is
/// 1-dimensional, the "positive" class is mapped to larger values. If
/// the prediction vector is 2-dimensional, the second dimension is
/// viewed as the "positive" class. For higher dimensional vectors, an
/// exception is thrown. In such a case, the column has to be
/// explicitly specified as an additional parameter.
///
/// \param target: class label, 0 or 1
/// \param prediction: prediction by classifier, OutputType-valued vector
double eval(Data<LabelType> const& target, Data<OutputType> const& prediction) const {
SHARK_CHECK(prediction.numberOfElements() >= 1,"[NegativeAUC::eval] empty prediction set");
std::size_t dim = dataDimension(prediction);
if(dim == 1)
return eval(target, prediction, 0);
else if(dim == 2)
return eval(target, prediction, 1);
throw SHARKEXCEPTION("[NegativeAUC::eval] no default value for column");
return 0.;
}
protected:
double trapArea(double x1, double x2, double y1, double y2) const {
double base = std::abs(x1-x2);
double heightAvg = (y1+y2)/2;
return base * heightAvg;
}
bool m_invert;
};
///
/// \brief Negative Wilcoxon-Mann-Whitney statistic
///
/// This class computes the Wilcoxon-Mann-Whitney statistic, which is
/// an unbiased estimate of the area under the ROC curve.
///
/// See, for example:
/// Corinna Cortes, Mehryar Mohri. Confidence Intervals for the Area under the ROC Curve. NIPS, 2004
///
/// The area is negated so that optimizing the AUC corresponds to a minimization task.
///
template<class LabelType = unsigned int, class OutputType = LabelType>
class NegativeWilcoxonMannWhitneyStatistic : public AbstractCost<LabelType, OutputType>
{
public:
/// Constructor.
/// \param invert: if set to true, the role of positive and negative class are switched
NegativeWilcoxonMannWhitneyStatistic(bool invert = false) {
m_invert = invert;
}
/// \brief From INameable: return the class name.
std::string name() const
{ return "NegativeWilcoxonMannWhitneyStatistic"; }
/// \brief Computes Wilcoxon-Mann-Whitney statistic.
/// \param target: interpreted as binary class label
/// \param prediction: interpreted as binary class label
/// \param column: indicates the column of the prediction vector interpreted as probability of positive class
double eval(Data<LabelType> const& target, Data<OutputType> const& prediction, unsigned int column) const {
SHARK_CHECK(prediction(0).size() > column,"[NegativeWilcoxonMannWhitneyStatistic::eval] column number too large");
std::vector<double> pos, neg;
for(std::size_t i=0; i<prediction.size(); i++) {
if(!m_invert){
if(target(i) > 0)
pos.push_back(prediction.element(i)(column));
else
neg.push_back(prediction.element(i)(column));
}else{
if(target(i) > 0)
pos.push_back(-prediction.element(i)(column));
else
neg.push_back(-prediction.element(i)(column));
}
}
std::size_t m = pos.size();
std::size_t n = neg.size();
std::sort (pos.begin(), pos.end());
std::sort (neg.begin(), neg.end());
double A = 0;
for(std::size_t i = 0, j = 0; i != m; i++) {
A += j;
for(std::size_t j = 0; j != n; j++) {
if(pos[i] > neg[j])
A++;
else
break;
}
}
#ifdef DEBUG
// most naive implementation
double verifyA = 0.;
for(std::size_t i=0; i<m; i++) {
for(std::size_t j=0; j<n; j++) {
if(pos[i] > neg[j]) verifyA++;
}
}
if (A!=verifyA) {
throw( shark::Exception( "shark::WilcoxonMannWhitneyStatistic::eval: error in algorithm, efficient and naive implementation do no coincide", __FILE__, __LINE__ ) );
}
#endif
return -A / (n*m);
}
double eval(Data<LabelType> const& target, Data<OutputType> const& prediction) const {
SHARK_CHECK(prediction.numberOfElements() >= 1,"[NegativeAUC::eval] empty prediction set");
std::size_t dim = dataDimension(prediction);
if(dim == 1)
return eval(target, prediction, 0);
else if(dim == 2)
return eval(target, prediction, 1);
throw SHARKEXCEPTION("[NegativeAUC::eval] no default value for column");
return 0.;
}
private:
bool m_invert;
};
}
#endif
|