/usr/include/shark/Models/RBFLayer.h is in libshark-dev 3.0.1+ds1-2ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 | /*!
*
*
* \brief Implements a radial basis function layer.
*
*
*
* \author O. Krause
* \date 2014
*
*
* \par Copyright 1995-2015 Shark Development Team
*
* <BR><HR>
* This file is part of Shark.
* <http://image.diku.dk/shark/>
*
* Shark is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Shark is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Shark. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef SHARK_MODELS_RBFLayer_H
#define SHARK_MODELS_RBFLayer_H
#include <shark/Core/DLLSupport.h>
#include <shark/Models/AbstractModel.h>
#include <boost/math/constants/constants.hpp>
namespace shark {
/// \brief Implements a layer of radial basis functions in a neural network.
///
/// A Radial basis function layer as modeled in shark is a set of N
/// Gaussian distributions \f$ p(x|i) \f$.
/// \f[
/// p(x|i) = e^{\gamma_i*\|x-m_i\|^2}
/// \f]
/// and the layer transforms an input x to a vector \f$(p(x|1),\dots,p(x|N)\f$.
/// The \f$\gamma_i\f$ govern the width of the Gaussians, while the
/// vectors \f$ m_i \f$ set the centers of every Gaussian distribution.
///
/// RBF networks profit much from good guesses on the centers and
/// kernel function parameters. In case of a Gaussian kernel a call
/// to k-Means or the EM-algorithm can be used to get a good
/// initialisation for the network.
class RBFLayer : public AbstractModel<RealVector,RealVector>
{
private:
struct InternalState: public State{
RealMatrix norm2;
RealMatrix p;
void resize(std::size_t numPatterns, std::size_t numNeurons){
norm2.resize(numPatterns,numNeurons);
p.resize(numPatterns,numNeurons);
}
};
public:
/// \brief Creates an empty Radial Basis Function layer.
SHARK_EXPORT_SYMBOL RBFLayer();
/// \brief Creates a layer of a Radial Basis Function Network.
///
/// This method creates a Radial Basis Function Network (RBFN) with
/// \em numInput input neurons and \em numOutput output neurons.
///
/// \param numInput Number of input neurons, equal to dimensionality of
/// input space.
/// \param numOutput Number of output neurons, equal to dimensionality of
/// output space and number of gaussian distributions
SHARK_EXPORT_SYMBOL RBFLayer(std::size_t numInput, std::size_t numOutput);
/// \brief From INameable: return the class name.
std::string name() const
{ return "RBFLayer"; }
///\brief Returns the current parameter vector. The amount and order of weights depend on the training parameters.
///
///The format of the parameter vector is \f$ (m_1,\dots,m_k,\log(\gamma_1),\dots,\log(\gamma_k))\f$
///if training of one or more parameters is deactivated, they are removed from the parameter vector
SHARK_EXPORT_SYMBOL RealVector parameterVector()const;
///\brief Sets the new internal parameters.
SHARK_EXPORT_SYMBOL void setParameterVector(RealVector const& newParameters);
///\brief Returns the number of parameters which are currently enabled for training.
SHARK_EXPORT_SYMBOL std::size_t numberOfParameters()const;
///\brief Returns the number of input neurons.
std::size_t inputSize()const{
return m_centers.size2();
}
///\brief Returns the number of output neurons.
std::size_t outputSize()const{
return m_centers.size1();
}
boost::shared_ptr<State> createState()const{
return boost::shared_ptr<State>(new InternalState());
}
/// \brief Configures a Radial Basis Function Network.
///
/// This method initializes the structure of the Radial Basis Function Network (RBFN) with
/// \em numInput input neurons, \em numOutput output neurons and \em numHidden
/// hidden neurons.
///
/// \param numInput Number of input neurons, equal to dimensionality of
/// input space.
/// \param numOutput Number of output neurons (basis functions), equal to dimensionality of
/// output space.
SHARK_EXPORT_SYMBOL void setStructure(std::size_t numInput, std::size_t numOutput);
using AbstractModel<RealVector,RealVector>::eval;
SHARK_EXPORT_SYMBOL void eval(BatchInputType const& patterns, BatchOutputType& outputs, State& state)const;
SHARK_EXPORT_SYMBOL void weightedParameterDerivative(
BatchInputType const& pattern, BatchOutputType const& coefficients, State const& state, RealVector& gradient
)const;
///\brief Enables or disables parameters for learning.
///
/// \param centers whether the centers should be trained
/// \param width whether the distribution width should be trained
SHARK_EXPORT_SYMBOL void setTrainingParameters(bool centers, bool width);
///\brief Returns the center values of the neurons.
BatchInputType const& centers()const{
return m_centers;
}
///\brief Sets the center values of the neurons.
BatchInputType& centers(){
return m_centers;
}
///\brief Returns the width parameter of the Gaussian functions
RealVector const& gamma()const{
return m_gamma;
}
/// \brief sets the width parameters - the gamma values - of the distributions.
SHARK_EXPORT_SYMBOL void setGamma(RealVector const& gamma);
/// From ISerializable, reads a model from an archive
SHARK_EXPORT_SYMBOL void read( InArchive & archive );
/// From ISerializable, writes a model to an archive
SHARK_EXPORT_SYMBOL void write( OutArchive & archive ) const;
protected:
//====model parameters
///\brief The center points. The i-th element corresponds to the center of neuron number i
RealMatrix m_centers;
///\brief stores the width parameters of the Gaussian functions
RealVector m_gamma;
/// \brief the logarithm of the normalization constant for every distribution
RealVector m_logNormalization;
//=====training parameters
///enables learning of the center points of the neurons
bool m_trainCenters;
///enables learning of the width parameters.
bool m_trainWidth;
};
}
#endif
|