This file is indexed.

/usr/include/shark/Models/Neurons.h is in libshark-dev 3.0.1+ds1-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
/*!
 * 
 *
 * \brief       -
 *
 * \author      O.Krause
 * \date        2011
 *
 *
 * \par Copyright 1995-2015 Shark Development Team
 * 
 * <BR><HR>
 * This file is part of Shark.
 * <http://image.diku.dk/shark/>
 * 
 * Shark is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published 
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * Shark is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with Shark.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
#ifndef MODELS_NEURONS_H
#define MODELS_NEURONS_H
 
#include <shark/LinAlg/Base.h>

 
namespace shark{
namespace detail{
	///\brief Baseclass for all Neurons. it defines y=operator(x) for evaluation and derivative(y) for the derivative of the sigmoid.
	///
	///You need to provide a public member function function() and functionDerivative() in the derived class.
	///Those functions calculate value and derivative for a single input.
	///Due to template magic, the neurons can either use vectors or matrices as input.
	///Additionally, they avoid temporary values completely using ublas magic.
	///Usage: 
	///struct Neuron:public NeuronBase<Neuron> { 
	///    double function(double x)const{return ...}
        ///    double functionDerivative(double y)const{return ...}
	///};
	template<class Derived>
	//again, one step ahead using templates!
	class NeuronBase{
	private:
		template<class T>
		struct Function{
			typedef T argument_type;
			typedef argument_type result_type;
			static const bool zero_identity = false;
			
			Function(NeuronBase<Derived> const* self):m_self(static_cast<Derived const*>(self)){}

			result_type operator()(argument_type x)const{
				return m_self->function(x);
			}
			Derived const* m_self;
		};
		template<class T>
		struct FunctionDerivative{
			typedef T argument_type;
			typedef argument_type result_type;
			static const bool zero_identity = false;

			FunctionDerivative(NeuronBase<Derived> const* self):m_self(static_cast<Derived const*>(self)){}

			result_type operator()(argument_type x)const{
				return m_self->functionDerivative(x);
			}
			Derived const* m_self;
		};
	public:
		
		///for a given input vector, calculates the elementwise application of the sigmoid function defined by Derived.
		template<class E>
		blas::vector_unary<E, Function<typename E::value_type> > operator()(blas::vector_expression<E> const& x)const{
			typedef Function<typename E::value_type> functor_type;
			return blas::vector_unary<E, functor_type >(x,functor_type(this));
		}
		///for a given batch of input vectors, calculates the elementwise application of the sigmoid function defined by Derived.
		template<class E>
		blas::matrix_unary<E, Function<typename E::value_type> > operator()(blas::matrix_expression<E> const& x)const{
			typedef Function<typename E::value_type> functor_type;
			return blas::matrix_unary<E, functor_type >(x,functor_type(this));
		}
		///Calculates the elementwise application of the sigmoid function derivative defined by Derived.
		///It's input is a matrix or vector of previously calculated neuron responses generated by operator()
		template<class E>
		blas::vector_unary<E, FunctionDerivative<typename E::value_type> > derivative(blas::vector_expression<E> const& x)const{
			typedef FunctionDerivative<typename E::value_type> functor_type;
			return blas::vector_unary<E, functor_type >(x,functor_type(this));
		}
		///Calculates the elementwise application of the sigmoid function derivative defined by Derived.
		///It's input is a matrix or vector of previously calculated neuron responses generated by operator()
		template<class E>
		blas::matrix_unary<E, FunctionDerivative<typename E::value_type> > derivative(blas::matrix_expression<E> const& x)const{
			typedef FunctionDerivative<typename E::value_type> functor_type;
			return blas::matrix_unary<E, functor_type >(x,functor_type(this));
		}
	};
}
	
///\brief Neuron which computes the Logistic (logistic) function with range [0,1].
///
///The Logistic function is 
///\f[ f(x)=\frac 1 {1+exp^(-x)}\f]
///it's derivative can be computed as
///\f[ f'(x)= 1-f(x)^2 \f]
struct LogisticNeuron : public detail::NeuronBase<LogisticNeuron>{
	template<class T>
	T function(T x)const{
		return sigmoid(x);
	}
	template<class T>
	T functionDerivative(T y)const{
		return y * (1 - y);
	}
};
///\brief Neuron which computes the hyperbolic tangenst with range [-1,1].
///
///The Tanh function is 
///\f[ f(x)=\tanh(x) = \frac 2 {1+exp^(-2x)}-1 \f]
///it's derivative can be computed as
///\f[ f'(x)= f(x)(1-f(x)) \f]
struct TanhNeuron: public detail::NeuronBase<TanhNeuron>{
	template<class T>
	T function(T x)const{
		return std::tanh(x);
	}
	template<class T>
	T functionDerivative(T y)const{
		return 1.0 - y*y;
	}
};
///\brief Linear activation Neuron. 
struct LinearNeuron: public detail::NeuronBase<LinearNeuron>{
	template<class T>
	T function(T x)const{
		return x;
	}
	template<class T>
	T functionDerivative(T y)const{
		return 1.0;
	}
};

///\brief Rectifier Neuron f(x) = max(0,x)
struct RectifierNeuron: public detail::NeuronBase<RectifierNeuron>{
	template<class T>
	T function(T x)const{
		return std::max<T>(0,x);
	}
	template<class T>
	T functionDerivative(T y)const{
		if(y == 0) 
			return T(0);
		return T(1);
	}
};

///\brief Fast sigmoidal function, which does not need to compute an exponential function.
///
///It is defined as
///\f[ f(x)=\frac x {1+|x|}\f]
///it's derivative can be computed as
///\f[ f'(x)= (1 - |f(x)|)^2 \f]
struct FastSigmoidNeuron: public detail::NeuronBase<FastSigmoidNeuron>{
	template<class T>
	T function(T x)const{
		return x/(1+std::abs(x));
	}
	template<class T>
	T functionDerivative(T y)const{
		return sqr(1.0 - std::abs(y));
	}
};


/// \brief Wraps a given neuron type and implements dropout for it
///
/// The function works by setting the output randomly to 0 with a 50% chance.
/// The function assumes for the wrapped neuron type that the derivative
/// for all points for which the output is 0, is 0. This is true for the LogisticNeuron,
/// FastSigmoidNeuron and RectifierNeuron.
template<class Neuron>
struct DropoutNeuron: public detail::NeuronBase<DropoutNeuron<Neuron> >{
	DropoutNeuron():m_probability(0.5),m_stochastic(true){}
	template<class T>
	T function(T x)const{
		if(m_stochastic && Rng::coinToss(m_probability)){
			return T(0);
		}
		else if(!m_stochastic){
			return (1-m_probability)*m_neuron.function(x);
		}else{
			return m_neuron.function(x);
		}
	}
	template<class T>
	T functionDerivative(T y)const{
		if(!m_stochastic){
			return (1-m_probability)*m_neuron.functionDerivative(y/ (1-m_probability));
		}else{
			return m_neuron.functionDerivative(y);
		}
	}
	
	void setProbability(double probability){m_probability = probability;}
	void setStochastic(bool stochastic){m_stochastic = stochastic;}
	
private:
	double m_probability;
	bool m_stochastic;
	Neuron m_neuron;
};

}

#endif