/usr/include/shark/Models/LinearModel.h is in libshark-dev 3.0.1+ds1-2ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 | /*!
*
*
* \brief Implements a Model using a linear function.
*
*
*
* \author T. Glasmachers, O. Krause
* \date 2010-2011
*
*
* \par Copyright 1995-2015 Shark Development Team
*
* <BR><HR>
* This file is part of Shark.
* <http://image.diku.dk/shark/>
*
* Shark is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Shark is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Shark. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef SHARK_MODELS_LINEARMODEL_H
#define SHARK_MODELS_LINEARMODEL_H
#include <shark/Models/AbstractModel.h>
namespace shark {
///
/// \brief Linear Prediction
///
/// \par
/// A linear model makes predictions according to
/// \f$ y = f(x) = A x + b \f$. There are two important special cases:
/// The output may be a single number, and the offset term b may be
/// dropped.
///
/// The class allows for dense and sparse input vector types. However it assumes that
/// the weight matrix and the ouputs are dense. There are some cases where this is not
/// good behavior. Check for example Normalizer for a class which is designed for sparse
/// inputs and outputs.
template <class InputType = RealVector>
class LinearModel : public AbstractModel<InputType,RealVector>
{
private:
typedef AbstractModel<InputType,RealVector> base_type;
typedef LinearModel<InputType> self_type;
/// Wrapper for the type erasure
RealMatrix m_matrix;
RealVector m_offset;
public:
typedef typename base_type::BatchInputType BatchInputType;
typedef typename base_type::BatchOutputType BatchOutputType;
/// CDefault Constructor; use setStructure later
LinearModel(){
base_type::m_features |= base_type::HAS_FIRST_PARAMETER_DERIVATIVE;
base_type::m_features |= base_type::HAS_FIRST_INPUT_DERIVATIVE;
}
/// Constructor creating a model with given dimnsionalities and optional offset term.
LinearModel(std::size_t inputs, std::size_t outputs = 1, bool offset = false)
: m_matrix(outputs,inputs,0.0),m_offset(offset?outputs:0,0.0){
base_type::m_features |= base_type::HAS_FIRST_PARAMETER_DERIVATIVE;
base_type::m_features |= base_type::HAS_FIRST_INPUT_DERIVATIVE;
}
///copy constructor
LinearModel(LinearModel const& model)
:m_matrix(model.m_matrix),m_offset(model.m_offset){
base_type::m_features |= base_type::HAS_FIRST_PARAMETER_DERIVATIVE;
base_type::m_features |= base_type::HAS_FIRST_INPUT_DERIVATIVE;
}
/// \brief From INameable: return the class name.
std::string name() const
{ return "LinearModel"; }
///swap
friend void swap(LinearModel& model1,LinearModel& model2){
swap(model1.m_matrix,model2.m_matrix);
swap(model1.m_offset,model2.m_offset);
}
///operator =
LinearModel& operator=(LinearModel const& model){
self_type tempModel(model);
swap(*this,tempModel);
return *this;
}
/// Construction from matrix (and vector)
LinearModel(RealMatrix const& matrix, RealVector const& offset = RealVector())
:m_matrix(matrix),m_offset(offset){
base_type::m_features |= base_type::HAS_FIRST_PARAMETER_DERIVATIVE;
base_type::m_features |= base_type::HAS_FIRST_INPUT_DERIVATIVE;
}
/// check for the presence of an offset term
bool hasOffset() const{
return m_offset.size() != 0;
}
/// obtain the input dimension
size_t inputSize() const{
return m_matrix.size2();
}
/// obtain the output dimension
size_t outputSize() const{
return m_matrix.size1();
}
/// obtain the parameter vector
RealVector parameterVector() const{
RealVector ret(numberOfParameters());
init(ret) << toVector(m_matrix),m_offset;
return ret;
}
/// overwrite the parameter vector
void setParameterVector(RealVector const& newParameters)
{
init(newParameters) >> toVector(m_matrix),m_offset;
}
/// return the number of parameter
size_t numberOfParameters() const{
return m_matrix.size1()*m_matrix.size2()+m_offset.size();
}
/// overwrite structure and parameters
void setStructure(std::size_t inputs, std::size_t outputs = 1, bool offset = false){
LinearModel<InputType> model(inputs,outputs,offset);
swap(*this,model);
}
/// overwrite structure and parameters
void setStructure(RealMatrix const& matrix, RealVector const& offset = RealVector()){
m_matrix = matrix;
m_offset = offset;
}
/// return a copy of the matrix in dense format
RealMatrix const& matrix() const{
return m_matrix;
}
RealMatrix& matrix(){
return m_matrix;
}
/// return the offset
RealVector const& offset() const{
return m_offset;
}
RealVector& offset(){
return m_offset;
}
boost::shared_ptr<State> createState()const{
return boost::shared_ptr<State>(new EmptyState());
}
using base_type::eval;
/// Evaluate the model: output = matrix * input + offset
void eval(BatchInputType const& inputs, BatchOutputType& outputs)const{
outputs.resize(inputs.size1(),m_matrix.size1());
//we multiply with a set of row vectors from the left
noalias(outputs) = prod(inputs,trans(m_matrix));
if (hasOffset()){
noalias(outputs)+=repeat(m_offset,inputs.size1());
}
}
/// Evaluate the model: output = matrix * input + offset
void eval(BatchInputType const& inputs, BatchOutputType& outputs, State& state)const{
eval(inputs,outputs);
}
///\brief Calculates the first derivative w.r.t the parameters and summing them up over all patterns of the last computed batch
void weightedParameterDerivative(
BatchInputType const& patterns, RealMatrix const& coefficients, State const& state, RealVector& gradient
)const{
SIZE_CHECK(coefficients.size2()==outputSize());
SIZE_CHECK(coefficients.size1()==patterns.size1());
gradient.resize(numberOfParameters());
std::size_t inputs = inputSize();
std::size_t outputs = outputSize();
gradient.clear();
blas::dense_matrix_adaptor<double> weightGradient = blas::adapt_matrix(outputs,inputs,gradient.storage());
//sum_i coefficients(output,i)*pattern(i))
noalias(weightGradient) = prod(trans(coefficients),patterns);
if (hasOffset()){
std::size_t start = inputs*outputs;
noalias(subrange(gradient, start, start + outputs)) = sum_rows(coefficients);
}
}
///\brief Calculates the first derivative w.r.t the inputs and summs them up over all patterns of the last computed batch
void weightedInputDerivative(
BatchInputType const & patterns,
BatchOutputType const & coefficients,
State const& state,
BatchInputType& derivative
)const{
SIZE_CHECK(coefficients.size2() == outputSize());
SIZE_CHECK(coefficients.size1() == patterns.size1());
derivative.resize(patterns.size1(),inputSize());
noalias(derivative) = prod(coefficients,m_matrix);
}
/// From ISerializable
void read(InArchive& archive){
archive >> m_matrix;
archive >> m_offset;
}
/// From ISerializable
void write(OutArchive& archive) const{
archive << m_matrix;
archive << m_offset;
}
};
}
#endif
|