/usr/include/shark/Models/FFNet.h is in libshark-dev 3.0.1+ds1-2ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 | /*!
*
*
* \brief Implements a Feef-Forward multilayer perceptron
*
*
*
* \author O. Krause
* \date 2010-2014
*
*
* \par Copyright 1995-2015 Shark Development Team
*
* <BR><HR>
* This file is part of Shark.
* <http://image.diku.dk/shark/>
*
* Shark is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Shark is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Shark. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef SHARK_MODELS_FFNET_H
#define SHARK_MODELS_FFNET_H
#include <shark/Models/AbstractModel.h>
#include <shark/Models/Neurons.h>
#include <boost/serialization/vector.hpp>
namespace shark{
struct FFNetStructures{
enum ConnectionType{
Normal, //< Layerwise connectivity without shortcuts
InputOutputShortcut, //< Normal with additional shortcuts from input to output neuron
Full //< Every layer is fully connected to all neurons in the lower layer
};
};
//! \brief Offers the functions to create and to work with a feed-forward network.
//!
//! A feed forward network consists of several layers. every layer consists of a linear
//! function with optional bias whose response is modified by a (nonlinear) activation function.
//! starting from the input layer, the output of every layer is the input of the next.
//! The two template arguments goveern the activation functions of the network.
//! The activation functions are typically sigmoidal.
//! All hidden layers share one activation function, while the output layer can be chosen to use
//! a different one, for example to allow the last output to be unbounded, in which case a
//! linear output function is used.
//! It is not possible to use arbitrary activation functions but Neurons following in the structure
//! in Models/Neurons.h Especially it holds that the derivative of the activation function
//! must have the form f'(x) = g(f(x)).
//!
//! This network class allows for several different topologies of structure. The layerwise structure
//! outlined above is the ddefault one, but the network also allows for shortcuts. most typically
//! an input-output shotcut is used, that is a shortcut that connects the input neurons directly
//! with the output using linear weights. But also a fully connected structure is possible, where
//! every layer is fed as input to every successive layer instead of only the next one.
template<class HiddenNeuron,class OutputNeuron>
class FFNet :public AbstractModel<RealVector,RealVector>
{
struct InternalState: public State{
//! \brief Used to store the current results of the activation
//! function for all neurons for the last batch of patterns \f$x\f$.
//!
//! There is one value for input+hidden+output units for every element of the batch.
//! For every value, the following holds:
//! Given a network with \f$M\f$ neurons, including
//! \f$c\f$ input and \f$n\f$ output neurons the single
//! values for \f$z\f$ are given as:
//! <ul>
//! <li>\f$z_i = x_i,\ \mbox{for\ } 0 \leq i < c\f$</li>
//! <li>\f$z_i = g_{hidden}(x),\ \mbox{for\ } c \leq i < M - n\f$</li>
//! <li>\f$z_i = y_{i-M+n} = g_{output}(x),\ \mbox{for\ } M - n \leq
//! i < M\f$</li>
//! </ul>
RealMatrix responses;
void resize(std::size_t neurons, std::size_t patterns){
responses.resize(neurons,patterns);
}
};
public:
//! Creates an empty feed-forward network. After the constructor is called,
//! one version of the #setStructure methods needs to be called
//! to define the network topology.
FFNet()
:m_numberOfNeurons(0),m_inputNeurons(0),m_outputNeurons(0){
m_features|=HAS_FIRST_PARAMETER_DERIVATIVE;
m_features|=HAS_FIRST_INPUT_DERIVATIVE;
}
//! \brief From INameable: return the class name.
std::string name() const
{ return "FFNet"; }
//! \brief Number of input neurons.
std::size_t inputSize()const{
return m_inputNeurons;
}
//! \brief Number of output neurons.
std::size_t outputSize()const{
return m_outputNeurons;
}
//! \brief Total number of neurons, that is inputs+hidden+outputs.
std::size_t numberOfNeurons()const{
return m_numberOfNeurons;
}
//! \brief Total number of hidden neurons.
std::size_t numberOfHiddenNeurons()const{
return numberOfNeurons() - inputSize() -outputSize();
}
//! \brief Returns the matrices for every layer used by eval.
std::vector<RealMatrix> const& layerMatrices()const{
return m_layerMatrix;
}
//! \brief Returns the weight matrix of the i-th layer.
RealMatrix const& layerMatrix(std::size_t layer)const{
return m_layerMatrix[layer];
}
void setLayer(std::size_t layerNumber, RealMatrix const& m, RealVector const& bias){
SIZE_CHECK(m.size1() == bias.size());
SIZE_CHECK(m.size1() == m_layerMatrix[layerNumber].size1());
SIZE_CHECK(m.size2() == m_layerMatrix[layerNumber].size2());
m_layerMatrix[layerNumber] = m;
std::size_t start = 0;
for(std::size_t i = 0; i != layerNumber; ++i){
start += m_layerMatrix[i].size1();
}
noalias(subrange(m_bias,start,start+bias.size())) = bias;
//set backprop matrices
setParameterVector(parameterVector());
}
//! \brief Returns the matrices for every layer used by backpropagation.
std::vector<RealMatrix> const& backpropMatrices()const{
return m_backpropMatrix;
}
//! \brief Returns the direct shortcuts between input and output neurons.
//!
//! This does not necessarily exist.
RealMatrix const& inputOutputShortcut() const{
return m_inputOutputShortcut;
}
/// \brief Returns the activation function of the hidden units.
HiddenNeuron const& hiddenActivationFunction()const{
return m_hiddenNeuron;
}
/// \brief Returns the activation function of the output units.
OutputNeuron const& outputActivationFunction()const{
return m_outputNeuron;
}
/// \brief Returns the activation function of the hidden units.
HiddenNeuron& hiddenActivationFunction(){
return m_hiddenNeuron;
}
/// \brief Returns the activation function of the output units.
OutputNeuron& outputActivationFunction(){
return m_outputNeuron;
}
//! \brief Returns the bias values for hidden and output units.
//!
//! This is either empty or a vector of size numberOfNeurons()-inputSize().
//! the first entry is the value of the first hidden unit while the last outputSize() units
//! are the values of the output units.
const RealVector& bias()const{
return m_bias;
}
///\brief Returns the portion of the bias vector of the i-th layer.
RealVector bias(std::size_t layer)const{
std::size_t start = 0;
for(std::size_t i = 0; i != layer; ++i){
start +=layerMatrices()[i].size1();
}
return subrange(m_bias,start,start+layerMatrices()[layer].size1());
}
//! \brief Returns the total number of parameters of the network.
std::size_t numberOfParameters()const{
std::size_t numParams = m_inputOutputShortcut.size1()*m_inputOutputShortcut.size2();
numParams += bias().size();
for(std::size_t i = 0; i != layerMatrices().size(); ++i){
numParams += layerMatrices()[i].size1()*layerMatrices()[i].size2();
}
return numParams;
}
//! returns the vector of used parameters inside the weight matrix
RealVector parameterVector() const{
RealVector parameters(numberOfParameters());
init(parameters) << matrixSet(m_layerMatrix),m_bias,toVector(m_inputOutputShortcut);
return parameters;
}
//! uses the values inside the parametervector to set the used values inside the weight matrix
void setParameterVector(RealVector const& newParameters){
//set the normal forward propagation weights
init(newParameters) >> matrixSet(m_layerMatrix),m_bias,toVector(m_inputOutputShortcut);
//we also have to update the backpropagation weights
//this is more or less an inversion. for all connections of a neuron i with a neuron j, i->j
//the backpropagation matrix has an entry j->i.
// we start with all neurons in layer i, looking at all layers j > i and checking whether
// they are connected, in this case we transpose the part of the matrix which is connecting
// layer j with layer i and copying it into the backprop matrix.
// we assume here, that either all neurons in layer j are connected to all neurons in layer i
// or that there are no connections at all beetween the layers.
std::size_t layeriStart = 0;
for(std::size_t layeri = 0; layeri != m_layerMatrix.size(); ++layeri){
std::size_t columni = 0;
std::size_t neuronsi = inputSize();
if(layeri > 0)
neuronsi = m_layerMatrix[layeri-1].size1();
std::size_t layerjStart = layeriStart + neuronsi;
for(std::size_t layerj = layeri; layerj != m_layerMatrix.size(); ++layerj){
std::size_t neuronsj = m_layerMatrix[layerj].size1();
//only process, if layer j has connections with layer i
if(layerjStart-m_layerMatrix[layerj].size2() <= layeriStart){
//Start of the weight columns to layer i in layer j.
//parantheses are important to protect against underflow
std::size_t weightStartj = layeriStart -(layerjStart - m_layerMatrix[layerj].size2());
noalias(columns(m_backpropMatrix[layeri],columni,columni+neuronsj))
= trans(columns(m_layerMatrix[layerj],weightStartj,weightStartj+neuronsi));
}
columni += neuronsj;
layerjStart += neuronsj;
}
layeriStart += neuronsi;
}
}
//! \brief Returns the output of all neurons after the last call of eval
//!
//! \param state last result of eval
//! \return Output value of the neurons.
RealMatrix const& neuronResponses(State const& state)const{
InternalState const& s = state.toState<InternalState>();
return s.responses;
}
boost::shared_ptr<State> createState()const{
return boost::shared_ptr<State>(new InternalState());
}
///\brief Returns the response of the i-th layer given the input of that layer.
///
/// this is usfull if only a portion of the network needs to be evaluated
/// be aware that this only works without shortcuts in the network
void evalLayer(std::size_t layer,RealMatrix const& patterns,RealMatrix& outputs)const{
std::size_t numPatterns = patterns.size1();
std::size_t numOutputs = m_layerMatrix[layer].size1();
outputs.resize(numPatterns,numOutputs);
outputs.clear();
//calculate activation. first compute the linear part and the optional bias and then apply
// the non-linearity
noalias(outputs) = prod(patterns,trans(layerMatrix(layer)));
if(!bias().empty()){
noalias(outputs) += repeat(bias(layer),numPatterns);
}
// if this is the last layer, use output neuron response
if(layer < m_layerMatrix.size()-1) {
noalias(outputs) = m_hiddenNeuron(outputs);
}
else {
noalias(outputs) = m_outputNeuron(outputs);
}
}
///\brief Returns the response of the i-th layer given the input of that layer.
///
/// this is usfull if only a portion of the network needs to be evaluated
/// be aware that this only works without shortcuts in the network
Data<RealVector> evalLayer(std::size_t layer, Data<RealVector> const& patterns)const{
int batches = (int) patterns.numberOfBatches();
Data<RealVector> result(batches);
SHARK_PARALLEL_FOR(int i = 0; i < batches; ++i){
evalLayer(layer,patterns.batch(i),result.batch(i));
}
return result;
}
void eval(RealMatrix const& patterns,RealMatrix& output, State& state)const{
InternalState& s = state.toState<InternalState>();
std::size_t numPatterns = patterns.size1();
//initialize the input layer using the patterns.
s.resize(numberOfNeurons(),numPatterns);
s.responses.clear();
noalias(rows(s.responses,0,m_inputNeurons)) = trans(patterns);
std::size_t beginNeuron = m_inputNeurons;
for(std::size_t layer = 0; layer != m_layerMatrix.size();++layer){
const RealMatrix& weights = m_layerMatrix[layer];
//number of rows of the layer is also the number of neurons
std::size_t endNeuron = beginNeuron + weights.size1();
//some subranges of vectors
//inputs are the last n neurons, where n is the number of columns of the matrix
RealSubMatrix const input = rows(s.responses,beginNeuron - weights.size2(),beginNeuron);
//the neurons responses
RealSubMatrix responses = rows(s.responses,beginNeuron,endNeuron);
//calculate activation. first compute the linear part and the optional bias and then apply
// the non-linearity
noalias(responses) = prod(weights,input);
if(!bias().empty()){
//the bias of the layer is shifted as input units can not have bias.
ConstRealVectorRange bias = subrange(m_bias,beginNeuron-inputSize(),endNeuron-inputSize());
noalias(responses) += trans(repeat(bias,numPatterns));
}
SHARK_CRITICAL_REGION{//beware Dropout Neurons!
// if this is the last layer, use output neuron response instead
if(layer < m_layerMatrix.size()-1) {
noalias(responses) = m_hiddenNeuron(responses);
}
else {
//add shortcuts if necessary
if(m_inputOutputShortcut.size1() != 0){
noalias(responses) += prod(m_inputOutputShortcut,trans(patterns));
}
noalias(responses) = m_outputNeuron(responses);
}
}
//go to the next layer
beginNeuron = endNeuron;
}
//Sanity check
SIZE_CHECK(beginNeuron == m_numberOfNeurons);
//copy output layer into output
output.resize(numPatterns,m_outputNeurons);
noalias(output) = trans(rows(s.responses,m_numberOfNeurons-outputSize(),m_numberOfNeurons));
}
using AbstractModel<RealVector,RealVector>::eval;
void weightedParameterDerivative(
BatchInputType const& patterns, RealMatrix const& coefficients, State const& state, RealVector& gradient
)const{
SIZE_CHECK(coefficients.size2() == m_outputNeurons);
SIZE_CHECK(coefficients.size1() == patterns.size1());
std::size_t numPatterns=patterns.size1();
//initialize delta using coefficients and clear the rest. also don't compute the delta for
// the input nurons as they are not needed.
RealMatrix delta(numberOfNeurons(),numPatterns,0.0);
RealSubMatrix outputDelta = rows(delta,delta.size1()-outputSize(),delta.size1());
noalias(outputDelta) = trans(coefficients);
computeDelta(delta,state,false);
computeParameterDerivative(delta,state,gradient);
}
void weightedInputDerivative(
BatchInputType const& patterns, RealMatrix const& coefficients, State const& state, BatchInputType& inputDerivative
)const{
SIZE_CHECK(coefficients.size2() == m_outputNeurons);
SIZE_CHECK(coefficients.size1() == patterns.size1());
std::size_t numPatterns=patterns.size1();
//initialize delta using coefficients and clear the rest
//we compute the full set of delta values here. the delta values of the inputs are the inputDerivative
RealMatrix delta(numberOfNeurons(),numPatterns,0.0);
RealSubMatrix outputDelta = rows(delta,delta.size1()-outputSize(),delta.size1());
noalias(outputDelta) = trans(coefficients);
computeDelta(delta,state,true);
inputDerivative.resize(numPatterns,inputSize());
noalias(inputDerivative) = trans(rows(delta,0,inputSize()));
}
virtual void weightedDerivatives(
BatchInputType const & patterns,
BatchOutputType const & coefficients,
State const& state,
RealVector& parameterDerivative,
BatchInputType& inputDerivative
)const{
SIZE_CHECK(coefficients.size2() == m_outputNeurons);
SIZE_CHECK(coefficients.size1() == patterns.size1());
std::size_t numPatterns = patterns.size1();
//compute full delta and thus the input derivative
RealMatrix delta(numberOfNeurons(),numPatterns,0.0);
RealSubMatrix outputDelta = rows(delta,delta.size1()-outputSize(),delta.size1());
noalias(outputDelta) = trans(coefficients);
computeDelta(delta,state,true);
inputDerivative.resize(numPatterns,inputSize());
noalias(inputDerivative) = trans(rows(delta,0,inputSize()));
//reuse delta to compute the parameter derivative
computeParameterDerivative(delta,state,parameterDerivative);
}
//! \brief Calculates the derivative for the special case, when error terms for all neurons of the network exist.
//!
//! This is usefull when the hidden neurons need to meet additional requirements.
//! The value of delta is changed during computation and holds the results of the backpropagation steps.
//! The format is such that the rows of delta are the neurons and the columns the patterns.
void weightedParameterDerivativeFullDelta(
RealMatrix const& patterns, RealMatrix& delta, State const& state, RealVector& gradient
)const{
InternalState const& s = state.toState<InternalState>();
SIZE_CHECK(delta.size1() == m_numberOfNeurons);
SIZE_CHECK(delta.size2() == patterns.size1());
SIZE_CHECK(s.responses.size2() == patterns.size1());
computeDelta(delta,state,false);
//now compute the parameter derivative from the delta values
computeParameterDerivative(delta,state,gradient);
}
//! \brief Creates a connection matrix for a network.
//!
//! Automatically creates a network with several layers, with
//! the numbers of neurons for each layer defined by \em layers.
//! layers must be at least size 2, which will result in a network with no hidden layers.
//! the first and last values correspond to the number of inputs and outputs respectively.
//!
//! The network supports three different tpes of connection models:
//! FFNetStructures::Normal corresponds to a layerwise connection between consecutive
//! layers. FFNetStructures::InputOutputShortcut additionally adds a shortcut between
//! input and output neurons. FFNetStructures::Full connects every layer to every following
//! layer, this includes also the shortcuts for input and output neurons. Additionally
//! a bias term an be used.
//!
//! While Normal and Full only use the layer matrices, inputOutputShortcut also uses
//! the corresponding matrix variable (be aware that in the case of only one hidden layer,
//! the shortcut between input and output leads to the same network as the Full - in that case
//! the Full topology is chosen for optimization reasons)
//!
//! \param layers contains the numbers of neurons for each layer of the network.
//! \param connectivity type of connection used between layers
//! \param biasNeuron if set to \em true, connections from
//! all neurons (except the input neurons)
//! to the bias will be set.
void setStructure(
std::vector<size_t> const& layers,
FFNetStructures::ConnectionType connectivity = FFNetStructures::Normal,
bool biasNeuron = true
){
SIZE_CHECK(layers.size() >= 2);
m_layerMatrix.resize(layers.size()-1);//we don't model the input layer
m_backpropMatrix.resize(layers.size()-1);//we don't model the output layer
//small optimization for ntworks with only 3 layers
//in this case, we don't need an explicit shortcut as we can integrate it into
//the big matrices
if(connectivity == FFNetStructures::InputOutputShortcut && layers.size() ==3)
connectivity = FFNetStructures::Full;
m_inputNeurons = layers.front();
m_outputNeurons = layers.back();
m_numberOfNeurons = 0;
for(std::size_t i = 0; i != layers.size(); ++i){
m_numberOfNeurons += layers[i];
}
if(biasNeuron){
m_bias.resize(m_numberOfNeurons - m_inputNeurons);
}
if(connectivity == FFNetStructures::Full){
//connect to all previous layers.
std::size_t numNeurons = layers[0];
for(std::size_t i = 0; i != m_layerMatrix.size(); ++i){
m_layerMatrix[i].resize(layers[i+1],numNeurons);
m_backpropMatrix[i].resize(layers[i],m_numberOfNeurons-numNeurons);
numNeurons += layers[i+1];
}
m_inputOutputShortcut.resize(0,0);
}else{
//only connect with the previous layer
for(std::size_t i = 0; i != m_layerMatrix.size(); ++i){
m_layerMatrix[i].resize(layers[i+1],layers[i]);
m_backpropMatrix[i].resize(layers[i],layers[i+1]);
}
//create a shortcut from input to output when desired
if(connectivity == FFNetStructures::InputOutputShortcut){
m_inputOutputShortcut.resize(m_outputNeurons,m_inputNeurons);
}
}
}
//! \brief Creates a connection matrix for a network with a
//! single hidden layer
//!
//! Automatically creates a network with
//! three different layers: An input layer with \em in input neurons,
//! an output layer with \em out output neurons and one hidden layer
//! with \em hidden neurons, respectively.
//!
//! \param in number of input neurons.
//! \param hidden number of neurons of the second hidden layer.
//! \param out number of output neurons.
//! \param connectivity Type of connectivity between the layers
//! \param bias if set to \em true, connections from
//! all neurons (except the input neurons)
//! to the bias will be set.
void setStructure(
std::size_t in,
std::size_t hidden,
std::size_t out,
FFNetStructures::ConnectionType connectivity = FFNetStructures::Normal,
bool bias = true
){
std::vector<size_t> layer(3);
layer[0] = in;
layer[1] = hidden;
layer[2] = out;
setStructure(layer, connectivity, bias);
}
//! \brief Creates a connection matrix for a network with two
//! hidden layers.
//!
//! Automatically creates a network with
//! four different layers: An input layer with \em in input neurons,
//! an output layer with \em out output neurons and two hidden layers
//! with \em hidden1 and \em hidden2 hidden neurons, respectively.
//!
//! \param in number of input neurons.
//! \param hidden1 number of neurons of the first hidden layer.
//! \param hidden2 number of neurons of the second hidden layer.
//! \param out number of output neurons.
//! \param connectivity Type of connectivity between the layers
//! \param bias if set to \em true, connections from
//! all neurons (except the input neurons)
//! to the bias will be set.
void setStructure(
std::size_t in,
std::size_t hidden1,
std::size_t hidden2,
std::size_t out,
FFNetStructures::ConnectionType connectivity = FFNetStructures::Normal,
bool bias = true
){
std::vector<size_t> layer(4);
layer[0] = in;
layer[1] = hidden1;
layer[2] = hidden2;
layer[3] = out;
setStructure(layer, connectivity, bias);
}
//! From ISerializable, reads a model from an archive
void read( InArchive & archive ){
archive>>m_inputNeurons;
archive>>m_outputNeurons;
archive>>m_numberOfNeurons;
archive>>m_layerMatrix;
archive>>m_backpropMatrix;
archive>>m_inputOutputShortcut;
archive>>m_bias;
}
//! From ISerializable, writes a model to an archive
void write( OutArchive & archive ) const{
archive<<m_inputNeurons;
archive<<m_outputNeurons;
archive<<m_numberOfNeurons;
archive<<m_layerMatrix;
archive<<m_backpropMatrix;
archive<<m_inputOutputShortcut;
archive<<m_bias;
}
private:
void computeDelta(
RealMatrix& delta, State const& state, bool computeInputDelta
)const{
SIZE_CHECK(delta.size1() == numberOfNeurons());
InternalState const& s = state.toState<InternalState>();
//initialize output neurons using coefficients
RealSubMatrix outputDelta = rows(delta,delta.size1()-outputSize(),delta.size1());
ConstRealSubMatrix outputResponse = rows(s.responses,delta.size1()-outputSize(),delta.size1());
noalias(outputDelta) *= m_outputNeuron.derivative(outputResponse);
//iterate backwards using the backprop matrix and propagate the errors to get the needed delta values
//we stop until we have filled all delta values. Thus we might not necessarily compute all layers.
//last neuron of the current layer that we need to compute
//we don't need (or can not) compute the values of the output neurons as they are given from the outside
std::size_t endNeuron = delta.size1()-outputSize();
std::size_t layer = m_backpropMatrix.size()-1;
std::size_t endIndex = computeInputDelta? 0: inputSize();
while(endNeuron > endIndex){
RealMatrix const& weights = m_backpropMatrix[layer];
std::size_t beginNeuron = endNeuron - weights.size1();//first neuron of the current layer
//get the delta and response values of this layer
RealSubMatrix layerDelta = rows(delta,beginNeuron,endNeuron);
RealSubMatrix layerDeltaInput = rows(delta,endNeuron,endNeuron+weights.size2());
ConstRealSubMatrix layerResponse = rows(s.responses,beginNeuron,endNeuron);
noalias(layerDelta) += prod(weights,layerDeltaInput);//add the values to the maybe non-empty delta part
if(layer != 0){
noalias(layerDelta) *= m_hiddenNeuron.derivative(layerResponse);
}
//go a layer backwards
endNeuron=beginNeuron;
--layer;
}
//add the shortcut deltas if necessary
if(inputOutputShortcut().size1() != 0)
noalias(rows(delta,0,inputSize())) += prod(trans(inputOutputShortcut()),outputDelta);
}
void computeParameterDerivative(RealMatrix const& delta, State const& state, RealVector& gradient)const{
SIZE_CHECK(delta.size1() == numberOfNeurons());
InternalState const& s = state.toState<InternalState>();
// calculate error gradient
//todo: take network structure into account to prevent checking all possible weights...
gradient.resize(numberOfParameters());
std::size_t pos = 0;
std::size_t layerStart = inputSize();
for(std::size_t layer = 0; layer != layerMatrices().size(); ++layer){
std::size_t layerRows = layerMatrices()[layer].size1();
std::size_t layerColumns = layerMatrices()[layer].size2();
std::size_t params = layerRows*layerColumns;
axpy_prod(
rows(delta,layerStart,layerStart+layerRows),
trans(rows(s.responses,layerStart-layerColumns,layerStart)),
//interpret part of the gradient as the weights of the layer
to_matrix(subrange(gradient,pos,pos+params),layerRows,layerColumns)
);
pos += params;
layerStart += layerRows;
}
//check whether we need the bias derivative
if(!bias().empty()){
//calculate bias derivative
for (std::size_t neuron = m_inputNeurons; neuron < m_numberOfNeurons; neuron++){
gradient(pos) = sum(row(delta,neuron));
pos++;
}
}
//compute shortcut derivative
if(inputOutputShortcut().size1() != 0){
std::size_t params = inputSize()*outputSize();
axpy_prod(
rows(delta,delta.size1()-outputSize(),delta.size1()),
trans(rows(s.responses,0,inputSize())),
to_matrix(subrange(gradient,pos,pos+params),outputSize(),inputSize())
);
}
}
//! \brief Number of all network neurons.
//!
//! This is the total number of neurons in the network, i.e.
//! input, hidden and output neurons.
std::size_t m_numberOfNeurons;
std::size_t m_inputNeurons;
std::size_t m_outputNeurons;
//! \brief represents the connection matrix using a layered structure for forward propagation
//!
//! a layer is made of neurons with consecutive indizes which are not
//! connected with each other. In other words, if there exists a k i<k<j such
//! that C(i,k) = 1 or C(k,j) = 1 or C(j,i) = 1 than the neurons i,j are not in the same layer.
//! This is the forward view, meaning that the layers holds the weights which are used to calculate
//! the activation of the neurons of the layer.
std::vector<RealMatrix> m_layerMatrix;
//! \brief optional matrix directly connecting input to output
//!
//! This is only filled when the ntworkhas an input-output shortcut but not a full layer connection.
RealMatrix m_inputOutputShortcut;
//!\brief represents the backwards view of the network as layered structure.
//!
//! This is the backward view of the Network which is used for the backpropagation step. So every
//! Matrix contains the weights of the neurons which are activatived by the layer.
std::vector<RealMatrix> m_backpropMatrix;
//! bias weights of the neurons
RealVector m_bias;
//!Type of hidden neuron. See Models/Neurons.h for a few choices
HiddenNeuron m_hiddenNeuron;
//! Type of output neuron. See Models/Neurons.h for a few choices
OutputNeuron m_outputNeuron;
};
}
#endif
|