/usr/include/shark/Models/Converter.h is in libshark-dev 3.0.1+ds1-2ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 | //===========================================================================
/*!
*
*
* \brief Format conversion models
*
* \par
* This file provides a number of parameter-free models
* performing format conversions. The classes are intended
* to be used in two ways: First, they can be used to convert
* data stored in Set or Datasets objects to different formats.
* Second, they can be appended to another model by means of
* the ConcatenatedModel class.
*
* \par
* The need for converter models arises in particular for
* classification problems. There are at least three encodings
* of class labels in common use. Assume there are d classes in
* the problem, then it is natural to use integers
* \f$ 0, \dots, d-1 \f$. Neural networks usually use a one-hot
* encoding, with a unit vector representing the class label.
* This encoding has the advantage that it naturally generalizes
* to encoding probabilities over class labels, and thus allows
* for objective functions like cross-entropy for model training.
* The third encoding in common use, both in support vector
* machines and neural networks, is a thresholded real value
* representing one out of d=2 classes. Within Shark we
* consistently use the data types unsigned int for the first
* and RealVector for the latter two cases, such that format
* conversions can focus on essential differences in encoding
* only. The models in this file allow for the most important
* conversions between these three encodings.
*
* \author T. Glasmachers
* \date 2010
*
*
* \par Copyright 1995-2015 Shark Development Team
*
* <BR><HR>
* This file is part of Shark.
* <http://image.diku.dk/shark/>
*
* Shark is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Shark is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Shark. If not, see <http://www.gnu.org/licenses/>.
*
*/
//===========================================================================
#ifndef SHARK_ML_MODEL_CONVERTER_H
#define SHARK_ML_MODEL_CONVERTER_H
#include <shark/Core/DLLSupport.h>
#include <shark/Models/AbstractModel.h>
namespace shark {
///
/// \brief Convertion of real-valued outputs to classes 0 or 1
///
/// \par
/// The ThresholdConverter is a parameter-free model converting its
/// real-valued input to a binary class label 0 or 1 by means of a
/// threshold operation. Values above the threshold result in class 1,
/// values equal to or below the threshold are converted to class 0.
/// Ths threshold takes a default value of zero, which is adjusted to
/// the case of a (linear or tanh) output neuron of a neural network,
/// and to a binary support vector machine.
///
class ThresholdConverter : public AbstractModel<RealVector, unsigned int>
{
public:
SHARK_EXPORT_SYMBOL ThresholdConverter(double threshold = 0.0);
/// \brief From INameable: return the class name.
std::string name() const
{ return "ThresholdConverter"; }
SHARK_EXPORT_SYMBOL RealVector parameterVector() const;
SHARK_EXPORT_SYMBOL void setParameterVector(RealVector const& newParameters);
SHARK_EXPORT_SYMBOL std::size_t numberOfParameters() const;
boost::shared_ptr<State> createState()const{
return boost::shared_ptr<State>(new EmptyState());
}
SHARK_EXPORT_SYMBOL void eval(BatchInputType const& patterns, BatchOutputType& outputs)const;
void eval(BatchInputType const& patterns, BatchOutputType& outputs, State& state)const{
eval(patterns,outputs);
}
using AbstractModel<RealVector,unsigned int>::eval;
protected:
double m_threshold;
};
///
/// \brief Convertion of real-vector outputs to vectors of class labels 0 or 1
///
/// \par
/// The ThresholdVectorConverter is a parameter-free model converting its
/// real-valued inputs to binary class labels 0 or 1 by means of a
/// threshold operation. Values above the threshold result in class 1,
/// values equal to or below the threshold are converted to class 0.
/// Ths threshold takes a default value of zero, which is adjusted to
/// the case of a (linear or tanh) output neuron of a neural network,
/// and to a binary support vector machine.
///
class ThresholdVectorConverter : public AbstractModel<RealVector, RealVector>
{
public:
SHARK_EXPORT_SYMBOL ThresholdVectorConverter(double threshold = 0.0);
/// \brief From INameable: return the class name.
std::string name() const
{ return "ThresholdVectorConverter"; }
SHARK_EXPORT_SYMBOL RealVector parameterVector() const;
SHARK_EXPORT_SYMBOL void setParameterVector(RealVector const& newParameters);
SHARK_EXPORT_SYMBOL std::size_t numberOfParameters() const;
boost::shared_ptr<State> createState()const{
return boost::shared_ptr<State>(new EmptyState());
}
SHARK_EXPORT_SYMBOL void eval(BatchInputType const& patterns, BatchOutputType& outputs)const;
void eval(BatchInputType const& patterns, BatchOutputType& outputs, State& state)const{
eval(patterns,outputs);
}
using AbstractModel<RealVector,RealVector>::eval;
protected:
double m_threshold;
};
///
/// \brief Conversion of real-valued outputs to classes
///
/// \par
/// The ArgMaxConverter is a model converting the
/// real-valued vector output of an underlying decision function to a
/// class label 0, ..., d-1 by means of an arg-max operation.
/// The class returns the argument of the maximal
/// input component as its output. This convertion is adjusted to
/// interpret the output of a neural network or a support vector
/// machine for multi-category classification.
///
/// In the special case that d is 1, it is assumed that the model can be represented as
/// a 2 d vector with both components having the same value but opposite sign.
/// In this case the behavior is equivalent to the threshold converter with threshold 0.
///
/// The underlying decision function is an arbitrary model. It should
/// be default constructable and it can be accessed using decisionFunction().
/// The parameters of the ArgMaxConverter are the ones of the decision function.
template<class Model>
class ArgMaxConverter : public AbstractModel<typename Model::InputType, unsigned int>
{
private:
typedef typename Model::BatchOutputType ModelBatchOutputType;
public:
typedef typename Model::InputType InputType;
typedef unsigned int OutputType;
typedef typename Batch<InputType>::type BatchInputType;
typedef Batch<unsigned int>::type BatchOutputType;
ArgMaxConverter()
{ }
ArgMaxConverter(Model const& decisionFunction)
: m_decisionFunction(decisionFunction)
{ }
std::string name() const
{ return "ArgMaxConverter<"+m_decisionFunction.name()+">"; }
RealVector parameterVector() const{
return m_decisionFunction.parameterVector();
}
void setParameterVector(RealVector const& newParameters){
m_decisionFunction.setParameterVector(newParameters);
}
std::size_t numberOfParameters() const{
return m_decisionFunction.numberOfParameters();
}
/// \brief Return the decision function
Model const& decisionFunction()const{
return m_decisionFunction;
}
/// \brief Return the decision function
Model& decisionFunction(){
return m_decisionFunction;
}
void eval(BatchInputType const& input, BatchOutputType& output)const{
ModelBatchOutputType modelResult;
m_decisionFunction.eval(input,modelResult);
std::size_t batchSize = shark::size(modelResult);
output.resize(batchSize);
if(modelResult.size2()== 1)
{
for(std::size_t i = 0; i != batchSize; ++i){
output(i) = modelResult(i,0) > 0.0;
}
}
else{
for(std::size_t i = 0; i != batchSize; ++i){
output(i) = static_cast<unsigned int>(arg_max(row(modelResult,i)));
}
}
}
void eval(BatchInputType const& input, BatchOutputType& output, State& state)const{
eval(input,output);
}
void eval(InputType const & pattern, OutputType& output)const{
typename Model::OutputType modelResult;
m_decisionFunction.eval(pattern,modelResult);
if(modelResult.size()== 1){
output = modelResult(0) > 0.0;
}
else{
output = static_cast<unsigned int>(arg_max(modelResult));
}
}
/// From ISerializable
void read(InArchive& archive){
archive >> m_decisionFunction;
}
/// From ISerializable
void write(OutArchive& archive) const{
archive << m_decisionFunction;
}
private:
Model m_decisionFunction;
};
};
#endif
|