This file is indexed.

/usr/include/shark/LinAlg/rotations.h is in libshark-dev 3.0.1+ds1-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
/*!
 * 
 *
 * \brief       Some operations for creating rotation matrices
 * 
 * 
 * 
 *
 * \author      O. Krause
 * \date        2011
 *
 *
 * \par Copyright 1995-2015 Shark Development Team
 * 
 * <BR><HR>
 * This file is part of Shark.
 * <http://image.diku.dk/shark/>
 * 
 * Shark is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published 
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * Shark is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with Shark.  If not, see <http://www.gnu.org/licenses/>.
 *
 */

#ifndef SHARK_LINALG_ROTATIONS_H
#define SHARK_LINALG_ROTATIONS_H

#include <shark/LinAlg/Base.h>
#include <shark/Rng/GlobalRng.h>
namespace shark{ namespace blas{
/**
 * \ingroup shark_globals
 * 
 * @{
 */

//! \brief Generates a Householder reflection from a vector to use with applyHouseholderLeft/Right
//!
//! Given a Vector x=(x0,x1,...,xn), finds a reflection with the property
//! (c, 0,0,...0) = (I-beta v v^t)x
//! and v = (x0-c,x1,x2,...,xn)
template<class X, class R>
typename X::value_type createHouseholderReflection(
	vector_expression<X> const& x, 
	vector_expression<R>& reflection
){
	SIZE_CHECK(x().size() != 0);
	SIZE_CHECK(x().size() == reflection().size());
	
	//special case for last iteration of QR etc
	//by convention diagonal elements are > 0
	if(x().size() == 1){
		reflection()(0) = 1;
		return 2;
	}
		
	
	typedef typename X::value_type Value;
	
	double norm = norm_2(x);
	if (x()(0) >= 0.0)
		norm *= -1.0;
    
	noalias(reflection()) = x;
	reflection()(0) -= norm;
	reflection() /= (x()(0) - norm);
	//if pivot is close to 0, this is one->numericaly stable
	//compared to the usual formula
	Value beta = (norm - x()(0)) / norm;
	return beta;
}
//\brief rotates a matrix using a householder reflection 
//
//calculates A*(1-beta*xx^T)
template<class Mat, class R, class T>
void applyHouseholderOnTheRight(
	matrix_expression<Mat> & matrix,
	vector_expression<R> const& reflection, 
	T beta
){
	SIZE_CHECK(matrix().size2() == reflection().size());
	SIZE_CHECK(reflection().size() != 0 );
	
	//special case for last iteration of QR etc
	if(reflection().size() == 1){
		matrix() *= 1-beta;
		return;
	}
	
	SIZE_CHECK(matrix().size2() == reflection().size());
	//Ax
	vector<T> temp = prod(matrix,reflection);
	
	//A -=beta*(Ax)x^T
	noalias(matrix()) -= beta * outer_prod(temp,reflection);
}


/// \brief rotates a matrix using a householder reflection 
///
/// calculates (1-beta*xx^T)*A
template<class Mat, class R, class T>
void applyHouseholderOnTheLeft(
	matrix_expression<Mat> & matrix,
	vector_expression<R> const& reflection, 
	T const& beta
){

	SIZE_CHECK(matrix().size1() == reflection().size());
	SIZE_CHECK(reflection().size() != 0 );
	
	//special case for last iteration of QR etc
	if(reflection().size() == 1){
		matrix()*=1-beta;
		return;
	}
	//x^T A
	vector<T> temp = prod(trans(matrix),reflection);
	
	//A -=beta*x(x^T A)
	noalias(matrix()) -= beta * outer_prod(reflection,temp);
}

/// \brief rotates a matrix using a householder reflection 
///
/// calculates (1-beta*xx^T)*A
template<class Mat, class R, class T>
void applyHouseholderOnTheLeft(
	temporary_proxy<Mat> matrix,
	vector_expression<R> const& reflection, 
	T const& beta
){
	applyHouseholderOnTheLeft(static_cast<Mat&>(matrix),reflection,beta);
}

/// \brief Initializes a matrix such that it forms a random rotation matrix.
///
/// The matrix needs to be quadratic and have the proper size
/// (e.g. call matrix::resize before).
///
/// One common way to  do this is using Gram-Schmidt-Orthogonalisation 
/// on a matrix which is initialized with gaussian numbers. However, this is
/// highly unstable for big matrices. 
///
/// This algorithm is implemented from one of the algorithms presented in
/// Francesco Mezzadri "How to generate random matrices from the classical compact groups"
/// http://arxiv.org/abs/math-ph/0609050v2
///
/// He gives two algorithms: the first one uses QR decomposition on the random gaussian
/// matrix and ensures that the signs of Q are correct by multiplying every column of Q
/// with the sign of the diagonal of R. 
///
/// We use nother algorithm implemented in the paper which works similarly, but 
/// reversed. We apply Householder rotations H_N H_{N-1}..H_1 where
/// H_1 is generated from a random vector on the n-dimensional unit sphere.
/// this requires less operations and is thus preferable. Also only half the
/// random numbers need to be generated
template< class MatrixT, typename RngType >
void randomRotationMatrix(matrix_container<MatrixT>& matrixC,RngType& rng){
	MatrixT& matrix = matrixC();
	SIZE_CHECK(matrix.size1() == matrix.size2());
	SIZE_CHECK(matrix.size1() > 0);
	Normal< RngType > normal( rng, 0, 1 );
	size_t size = matrix.size1();
	diag(matrix) = repeat(1.0,size);
	//the first element is just -1 or 1
	matrix(size-1,size-1) = normal();
	matrix(size-1,size-1) /= std::abs(matrix(size-1,size-1));
	
	RealVector v(size);
	for(std::size_t i = 2; i != size;++i){
		//create the random vector on the unit-sphere for the i-dimensional subproblem
		for(std::size_t j=0;j != i; ++j){
			v(j) = normal();
		}
		subrange(v,0,i) /=norm_2(subrange(v,0,i));//project on sphere
		
		double v0 = v(0);
		v(0) += v0/std::abs(v0);
		
		//compute new norm of v
		//~ double normvSqr = 1.0+(1+v0)*(1+v0)-v0*v0;
		double normvSqr = norm_sqr(subrange(v,0,i));
		
		//apply the householder rotation to the i-th submatrix
		applyHouseholderOnTheLeft(subrange(matrix,size-i,size,size-i,size),subrange(v,0,i),2.0/normvSqr);
		
	}
}

/// \brief Initializes a matrix such that it forms a random rotation
///
///matrix.  The matrix needs to be quadratic and have the proper size
///(e.g. call matrix::resize before) uses the global RNG.
template<class MatrixT>
void randomRotationMatrix(matrix_container<MatrixT>& matrixC){
	randomRotationMatrix( matrixC, Rng::globalRng );
}

//! Creates a random rotation matrix with a certain size using the random number generator rng.
template<typename RngType>
RealMatrix randomRotationMatrix(size_t size,RngType& rng){
	RealMatrix mat(size,size);
	randomRotationMatrix(mat,rng);
	return mat;
}

//! Creates a random rotation matrix with a certain size using the global random number gneerator.
inline RealMatrix randomRotationMatrix(size_t size){
	return randomRotationMatrix( size, shark::Rng::globalRng );
}

/** @}*/
}}
#endif