This file is indexed.

/usr/include/shark/LinAlg/PartlyPrecomputedMatrix.h is in libshark-dev 3.0.1+ds1-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
//===========================================================================
/*!
 *
 *
 * \brief       Partly Precomputed version of a matrix for quadratic programming
 *
 *
 * \par
 *
 *
 *
 * \author      T. Glasmachers, A. Demircioglu
 * \date        2007-2014
 *
 *
 * \par Copyright 1995-2015 Shark Development Team
 *
 * <BR><HR>
 * This file is part of Shark.
 * <http://image.diku.dk/shark/>
 *
 * Shark is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Shark is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with Shark.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
//===========================================================================


#ifndef SHARK_LINALG_PARTLYPRECOMPUTEDMATRIX_H
#define SHARK_LINALG_PARTLYPRECOMPUTEDMATRIX_H

#include <shark/Data/Dataset.h>
#include <shark/LinAlg/Base.h>

#include <vector>
#include <cmath>


namespace shark
{

///
/// \brief Partly Precomputed version of a matrix for quadratic programming
///
/// \par
/// The PartlyPrecomputedMatrix class computes all pairs of kernel
/// evaluations that fits the given cachesize in its constructor and
/// stores them im memory.
///
/// \par
/// Use of this class may be beneficial for certain model
/// selection strategies, where the whole matrix does not fit into
/// memory, and the LRU cache will produce too much hit rates,
/// so that at least partially caching the kernel matrix will help.
/// In particular this will help the KernelSGD/Pegasos algorithm.
///
template <class Matrix>
class PartlyPrecomputedMatrix
{
public:
	typedef typename Matrix::QpFloatType QpFloatType;

	/// Constructor
	/// \param[in]  base    matrix to be cached. it is assumed that this matrix is not precomputed,
	///                                 but the (costy) computation takes place every time an entry is queried.
	/// \param[in]  cachesize       size of the cache to use in bytes. the size of the cached matrix will
	//                                  depend on this value.
	PartlyPrecomputedMatrix(Matrix* base, std::size_t cachesize = 0x4000000)
		: m_cacheSize(cachesize)
		, m_baseMatrix(base)
	{
		if((m_baseMatrix == NULL) || (m_baseMatrix ->size() == 0))
			throw SHARKEXCEPTION("Cannot cache a NULL matrix!");

		// remember the original size of the matrix
		m_originalNumberOfRows = m_baseMatrix -> size();

		// determine how many bytes we need for a single row
		size_t rowSizeBytes = m_originalNumberOfRows * sizeof(QpFloatType);

		// how many rows fit into our cache?
		size_t m_nRows = (size_t) m_cacheSize / rowSizeBytes;
		if(m_nRows < 1)
			throw SHARKEXCEPTION("Cache size is smaller than the size of a row!");

		// if we have more space than needed, well, we do not need it.
		if(m_nRows > m_originalNumberOfRows)
			m_nRows = m_originalNumberOfRows ;

		// resize matrix
		m_cachedMatrix.resize(m_nRows, m_baseMatrix ->size());

		// copy the rows
		for(std::size_t r = 0; r < m_cachedMatrix.size1(); r++)
		{
			for(std::size_t j = 0; j < m_baseMatrix->size(); j++)
			{
				m_cachedMatrix(r, j) = (*m_baseMatrix)(r, j);
			}
		}
	}



	/// return, if a given row is cached
	/// \param[in]  k       row to check
	/// \return     is given row in cached matrix or not?
	bool isCached(std::size_t k) const
	{
		if(k < m_cachedMatrix.size1())
			return true;
		return false;
	}



	/// return a complete row of the matrix.
	/// if the row is cached, it will be returned from there, if not, it will
	/// be recomputed on-the-fly and not stored.
	/// param[in]  k       row to compute
	/// param[in]  storage     vector to store the row. must be the same size as a row!
	void row(std::size_t k, blas::vector<QpFloatType> &storage) const
	{
		RANGE_CHECK(k < m_originalNumberOfRows);
		RANGE_CHECK(0 <= k);
		SIZE_CHECK(storage.size() == m_cachedMatrix.size2());
		if(isCached(k) == true)
		{
			for(std::size_t j = 0; j < m_cachedMatrix.size2(); j++)
			{
				storage[j] = m_cachedMatrix(k, j);
			}
		}
		else
		{
			for(std::size_t j = 0; j < m_cachedMatrix.size2(); j++)
			{
				storage[j] = (*m_baseMatrix)(k, j);
			}
		}
	}



	/// return a single matrix entry
	/// param[in]  i       row of entry
	/// param[in]  j       column entry
	/// @return     value of matrix at given position
	QpFloatType operator()(std::size_t i, std::size_t j) const
	{
		return entry(i, j);
	}



	/// return a single matrix entry
	/// param[in]  i       row of entry
	/// param[in]  j       column entry
	/// @return     value of matrix at given position
	QpFloatType entry(std::size_t i, std::size_t j) const
	{
		// check if we have to compute that or not
		if(isCached(i))
			return m_cachedMatrix(i, j);

		// ok, need to compute that element
		return (*m_baseMatrix)(i, j);
	}



	/// return the number of cached rows
	/// @return     number of rows that are cached
	std::size_t size() const
	{
		return m_cachedMatrix.size();
	}



	/// return size of cached matrix in QpFloatType units
	/// @return     the capacity of the cached matrix in QpFloatType units
	std::size_t getMaxCacheSize()
	{
		return m_cachedMatrix.size() * m_cachedMatrix.size2();
	}



	/// return the dimension of a row in the cache (as we do not shorten our
	/// rows, this must be the same as the dimension of a row in the original kernel matrix).
	/// @return     dimension of any cached row
	std::size_t getCacheRowSize() const
	{
		return m_cachedMatrix.size2();
	}



protected:
	/// container for precomputed values
	blas::matrix<QpFloatType> m_cachedMatrix;

	// maximal size of cache
	size_t m_cacheSize;

	// original kernel matrix, will be accessed if entries outsied the cache are requested
	Matrix* m_baseMatrix;

	// remember how big the original matrix was to prevent access errors
	size_t m_originalNumberOfRows;
};

}
#endif