/usr/include/shark/LinAlg/Metrics.h is in libshark-dev 3.0.1+ds1-2ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 | /*!
*
*
* \brief Helper functions to calculate several norms and distances.
*
*
*
* \author O.Krause M.Thuma
* \date 2010-2011
*
*
* \par Copyright 1995-2015 Shark Development Team
*
* <BR><HR>
* This file is part of Shark.
* <http://image.diku.dk/shark/>
*
* Shark is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Shark is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Shark. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef SHARK_LINALG_METRICS_H
#define SHARK_LINALG_METRICS_H
#include <shark/LinAlg/BLAS/blas.h>
#include <shark/Core/Math.h>
namespace shark{ namespace blas{
///////////////////////////////////////NORMS////////////////////////////////////////
/**
* \brief Normalized squared norm_2 (diagonal Mahalanobis).
*
* Contrary to some conventions, dimension-wise weights are considered instead of std. deviations:
* \f$ n^2(v) = \sum_i w_i v_i^2 \f$
* nb: the weights themselves are not squared, but multiplied onto the squared components
*/
template<class VectorT, class WeightT>
typename VectorT::value_type diagonalMahalanobisNormSqr(
vector_expression<VectorT> const& vector,
vector_expression<WeightT> const& weights
) {
SIZE_CHECK( vector().size() == weights().size() );
return inner_prod(weights(),sqr(vector()));
}
/**
* \brief Normalized norm_2 (diagonal Mahalanobis).
*
* Contrary to some conventions, dimension-wise weights are considered instead of std. deviations:
* \f$ n^2(v) = \sqrt{\sum_i w_i v_i^2} \f$
* nb: the weights themselves are not squared, but multiplied onto the squared components
*/
template<class VectorT, class WeightT>
typename VectorT::value_type diagonalMahalanobisNorm(
vector_expression<VectorT> const& vector,
vector_expression<WeightT> const& weights
) {
SIZE_CHECK( vector().size() == weights().size() );
return std::sqrt(diagonalMahalanobisNormSqr(vector,weights));
}
////////////////////////////////////////DISTANCES/////////////////////////////////////////////////
namespace detail{
/**
* \brief Normalized Euclidian squared distance (squared diagonal Mahalanobis)
* between two vectors, optimized for two Compressed arguments.
*
* Contrary to some conventions, dimension-wise weights are considered instead of std. deviations:
* \f$ d^2(v) = \sum_i w_i (x_i-z_i)^2 \f$
* NOTE: The weights themselves are not squared, but multiplied onto the squared components.
*/
template<class VectorT, class VectorU, class WeightT>
typename VectorT::value_type diagonalMahalanobisDistanceSqr(
VectorT const& op1,
VectorU const& op2,
WeightT const& weights,
sparse_bidirectional_iterator_tag,
sparse_bidirectional_iterator_tag
){
using shark::sqr;
typename VectorT::value_type sum=0;
typename VectorT::const_iterator iter1=op1.begin();
typename VectorU::const_iterator iter2=op2.begin();
typename VectorT::const_iterator end1=op1.end();
typename VectorU::const_iterator end2=op2.end();
//be aware of empty vectors!
while(iter1 != end1 && iter2 != end2)
{
std::size_t index1=iter1.index();
std::size_t index2=iter2.index();
if(index1==index2){
sum += weights(index1) * sqr(*iter1-*iter2);
++iter1;
++iter2;
}
else if(index1<index2){
sum += weights(index1) * sqr(*iter1);
++iter1;
}
else {
sum += weights(index2) * sqr(*iter2);
++iter2;
}
}
while(iter1 != end1)
{
std::size_t index1=iter1.index();
sum += weights(index1) * sqr(*iter1);
++iter1;
}
while(iter2 != end2)
{
std::size_t index2=iter2.index();
sum += weights(index2) * sqr(*iter2);
++iter2;
}
return sum;
}
/**
* \brief Normalized Euclidian squared distance (squared diagonal Mahalanobis)
* between two vectors, optimized for one dense and one sparse argument
*/
template<class VectorT, class VectorU, class WeightT>
typename VectorT::value_type diagonalMahalanobisDistanceSqr(
VectorT const& op1,
VectorU const& op2,
WeightT const& weights,
sparse_bidirectional_iterator_tag,
dense_random_access_iterator_tag
){
using shark::sqr;
typename VectorT::const_iterator iter=op1.begin();
typename VectorT::const_iterator end=op1.end();
std::size_t index = 0;
std::size_t pos = 0;
typename VectorT::value_type sum=0;
for(;iter != end;++iter,++pos){
index = iter.index();
for(;pos != index;++pos){
sum += weights(pos) * sqr(op2(pos));
}
sum += weights(index) * sqr(*iter-op2(pos));
}
for(;pos != op2.size();++pos){
sum += weights(pos) * sqr(op2(pos));
}
return sum;
}
template<class VectorT, class VectorU, class WeightT>
typename VectorT::value_type diagonalMahalanobisDistanceSqr(
VectorT const& op1,
VectorU const& op2,
WeightT const& weights,
dense_random_access_iterator_tag arg1tag,
sparse_bidirectional_iterator_tag arg2tag
){
return diagonalMahalanobisDistanceSqr(op2,op1,weights,arg2tag,arg1tag);
}
template<class VectorT, class VectorU, class WeightT>
typename VectorT::value_type diagonalMahalanobisDistanceSqr(
VectorT const& op1,
VectorU const& op2,
WeightT const& weights,
dense_random_access_iterator_tag,
dense_random_access_iterator_tag
){
return inner_prod(op1-op2,(op1-op2)*weights);
}
template<class MatrixT,class VectorU, class Result>
void distanceSqrBlockVector(
MatrixT const& operands,
VectorU const& op2,
Result& result
){
typedef typename Result::value_type value_type;
scalar_vector< value_type > one(op2.size(),static_cast<value_type>(1.0));
for(std::size_t i = 0; i != operands.size1(); ++i){
result(i) = diagonalMahalanobisDistanceSqr(
row(operands,i),op2,one,
typename major_iterator<MatrixT>::type::iterator_category(),
typename VectorU::iterator::iterator_category()
);
}
}
///\brief implementation for two input blocks where at least one matrix has only a few rows
template<class MatrixX,class MatrixY, class Result>
void distanceSqrBlockBlockRowWise(
MatrixX const& X,
MatrixY const& Y,
Result& distances
){
std::size_t sizeX=X.size1();
std::size_t sizeY=Y.size1();
if(sizeX < sizeY){//iterate over the rows of the block with less rows
for(std::size_t i = 0; i != sizeX; ++i){
matrix_row<Result> distanceRow = row(distances,i);
distanceSqrBlockVector(
Y,row(X,i),distanceRow
);
}
}else{
for(std::size_t i = 0; i != sizeY; ++i){
matrix_column<Result> distanceCol = column(distances,i);
distanceSqrBlockVector(
X,row(Y,i),distanceCol
);
}
}
}
///\brief implementation for two dense input blocks
template<class MatrixX,class MatrixY, class Result>
void distanceSqrBlockBlock(
MatrixX const& X,
MatrixY const& Y,
Result& distances,
dense_random_access_iterator_tag,
dense_random_access_iterator_tag
){
typedef typename Result::value_type value_type;
std::size_t sizeX=X.size1();
std::size_t sizeY=Y.size1();
ensure_size(distances,X.size1(),Y.size1());
if(sizeX < 10 || sizeY<10){
distanceSqrBlockBlockRowWise(X,Y,distances);
return;
}
//fast blockwise iteration
//uses: (a-b)^2 = a^2 -2ab +b^2
noalias(distances) = -2*prod(X,trans(Y));
//first a^2+b^2
vector<value_type> ySqr(sizeY);
for(std::size_t i = 0; i != sizeY; ++i){
ySqr(i) = norm_sqr(row(Y,i));
}
//initialize d_ij=x_i^2+y_i^2
for(std::size_t i = 0; i != sizeX; ++i){
value_type xSqr = norm_sqr(row(X,i));
noalias(row(distances,i)) += repeat(xSqr,sizeY) + ySqr;
}
}
//\brief default implementation used, when one of the arguments is not dense
template<class MatrixX,class MatrixY,class Result>
void distanceSqrBlockBlock(
MatrixX const& X,
MatrixY const& Y,
Result& distances,
sparse_bidirectional_iterator_tag,
sparse_bidirectional_iterator_tag
){
distanceSqrBlockBlockRowWise(X,Y,distances);
}
}
/**
* \ingroup shark_globals
*
* @{
*/
/**
* \brief Normalized Euclidian squared distance (squared diagonal Mahalanobis)
* between two vectors.
*
* NOTE: The weights themselves are not squared, but multiplied onto the squared components.
*/
template<class VectorT, class VectorU, class WeightT>
typename VectorT::value_type diagonalMahalanobisDistanceSqr(
vector_expression<VectorT> const& op1,
vector_expression<VectorU> const& op2,
vector_expression<WeightT> const& weights
){
SIZE_CHECK(op1().size()==op2().size());
SIZE_CHECK(op1().size()==weights().size());
//dispatch given the types of the argument
return detail::diagonalMahalanobisDistanceSqr(
op1(), op2(), weights(),
typename VectorT::iterator::iterator_category(),
typename VectorU::iterator::iterator_category()
);
}
/**
* \brief Squared distance between two vectors.
*/
template<class VectorT,class VectorU>
typename VectorT::value_type distanceSqr(
vector_expression<VectorT> const& op1,
vector_expression<VectorU> const& op2
){
SIZE_CHECK(op1().size()==op2().size());
typedef typename VectorT::value_type value_type;
scalar_vector< value_type > one(op1().size(),static_cast<value_type>(1.0));
return diagonalMahalanobisDistanceSqr(op1,op2,one);
}
/**
* \brief Squared distance between a vector and a set of vectors and stores the result in the vector of distances
*
* The squared distance between the vector and every row-vector of the matrix is calculated.
* This can be implemented much more efficiently.
*/
template<class MatrixT,class VectorU, class VectorR>
void distanceSqr(
matrix_expression<MatrixT> const& operands,
vector_expression<VectorU> const& op2,
vector_expression<VectorR>& distances
){
SIZE_CHECK(operands().size2()==op2().size());
ensure_size(distances,operands().size1());
detail::distanceSqrBlockVector(
operands(),op2(),distances()
);
}
/**
* \brief Squared distance between a vector and a set of vectors
*
* The squared distance between the vector and every row-vector of the matrix is calculated.
* This can be implemented much more efficiently.
*/
template<class MatrixT,class VectorU>
vector<typename MatrixT::value_type> distanceSqr(
matrix_expression<MatrixT> const& operands,
vector_expression<VectorU> const& op2
){
SIZE_CHECK(operands().size2()==op2().size());
vector<typename MatrixT::value_type> distances(operands().size1());
distanceSqr(operands,op2,distances);
return distances;
}
/**
* \brief Squared distance between a vector and a set of vectors
*
* The squared distance between the vector and every row-vector of the matrix is calculated.
* This can be implemented much more efficiently.
*/
template<class MatrixT,class VectorU>
vector<typename MatrixT::value_type> distanceSqr(
vector_expression<VectorU> const& op1,
matrix_expression<MatrixT> const& operands
){
SIZE_CHECK(operands().size2()==op1().size());
vector<typename MatrixT::value_type> distances(operands().size1());
distanceSqr(operands,op1,distances);
return distances;
}
/**
* \brief Squared distance between the vectors of two sets of vectors
*
* The squared distance between every row-vector of the first matrix x
* and every row-vector of the second matrix y is calculated.
* This can be implemented much more efficiently.
* The results are returned as a matrix, where the element in the i-th
* row and the j-th column is distanceSqr(x_i,y_j).
*/
template<class MatrixT,class MatrixU>
matrix<typename MatrixT::value_type> distanceSqr(
matrix_expression<MatrixT> const& X,
matrix_expression<MatrixU> const& Y
){
typedef matrix<typename MatrixT::value_type> Matrix;
SIZE_CHECK(X().size2()==Y().size2());
std::size_t sizeX=X().size1();
std::size_t sizeY=Y().size1();
Matrix distances(sizeX, sizeY);
detail::distanceSqrBlockBlock(
X(),Y(),distances,
typename major_iterator<MatrixT>::type::iterator_category(),
typename major_iterator<MatrixU>::type::iterator_category()
);
return distances;
}
/**
* \brief Calculates distance between two vectors.
*/
template<class VectorT,class VectorU>
typename VectorT::value_type distance(
vector_expression<VectorT> const& op1,
vector_expression<VectorU> const& op2
){
SIZE_CHECK(op1().size()==op2().size());
return std::sqrt(distanceSqr(op1,op2));
}
/**
* \brief Normalized euclidian distance (diagonal Mahalanobis) between two vectors.
*
* Contrary to some conventions, dimension-wise weights are considered instead of std. deviations:
* \f$ d(v) = \left( \sum_i w_i (x_i-z_i)^2 \right)^{1/2} \f$
* nb: the weights themselves are not squared, but multiplied onto the squared components
*/
template<class VectorT, class VectorU, class WeightT>
typename VectorT::value_type diagonalMahalanobisDistance(
vector_expression<VectorT> const& op1,
vector_expression<VectorU> const& op2,
vector_expression<WeightT> const& weights
){
SIZE_CHECK(op1().size()==op2().size());
SIZE_CHECK(op1().size()==weights().size());
return std::sqrt(diagonalMahalanobisDistanceSqr(op1(), op2(), weights));
}
/** @}*/
}}
#endif
|