This file is indexed.

/usr/include/shark/Data/DataView.h is in libshark-dev 3.0.1+ds1-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
//===========================================================================
/*!
 * 
 *
 * \brief       Fast lookup for elements in constant datasets
 * 
 * 
 * 
 * 
 *
 * \author      O. Krause
 * \date        2012
 *
 *
 * \par Copyright 1995-2015 Shark Development Team
 * 
 * <BR><HR>
 * This file is part of Shark.
 * <http://image.diku.dk/shark/>
 * 
 * Shark is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published 
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * Shark is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with Shark.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
//===========================================================================


#ifndef SHARK_DATA_DATAVIEW_H
#define SHARK_DATA_DATAVIEW_H

#include <shark/Data/Dataset.h>
#include <shark/Core/utility/functional.h>
#include <boost/type_traits/is_const.hpp>
#include <boost/range/adaptor/transformed.hpp>
#include <boost/bind.hpp>
#include <boost/range/algorithm/copy.hpp>
namespace shark {
/// \brief Constant time Element-Lookup for Datasets
///
/// Datasets are fast for random lookup of batches. Since batch sizes can be arbitrary structured and
/// changed by the user, there is no way for the Data and LabeledData classes to provide fast random access
/// to single elements. Still, this property is needed quite often, for example for creating subsets,
/// randomize data or tree structures. 
/// A View stores the position of every element in a dataset. So it has constant time access to the elements but
/// it also requires linear memory in the number of elements in the set. This is typically small compared
/// to the size of the set itself, but construction imposes an considerable overhead.
///
/// In contrast to (Un)LabeledData, which is centered around batches, the View is centered around single elements,
/// so its iterators iterate over the elements.
/// For a better support for bagging an index method is added which returns the position of the element in the
/// underlying data container. Also the iterators are indexed and return this index.
template <class DatasetType>   //template parameter can be const!
class DataView
{
public:
	typedef typename boost::remove_const<DatasetType>::type dataset_type;   //(non const) type of the underlying dataset
	typedef typename dataset_type::element_type value_type;
	typedef typename dataset_type::const_element_reference const_reference;
	typedef typename dataset_type::batch_type batch_type;
	// We want to support immutable as well as mutable datasets. So we query whether the dataset
	// is mutable and change the reference type to const if the dataset is immutable.
	typedef typename boost::mpl::if_<
		boost::is_const<DatasetType>,
		typename dataset_type::const_element_reference,
		typename dataset_type::element_reference
	>::type reference;

private:
	typedef typename boost::mpl::if_<
		boost::is_const<DatasetType>,
		typename dataset_type::const_batch_range,
		typename dataset_type::batch_range
	>::type batch_range;
	template<class Reference, class View>
	class IteratorBase: public SHARK_ITERATOR_FACADE<
		IteratorBase<Reference,View>,
		value_type,
		std::random_access_iterator_tag,
		Reference
	>{
	public:
		IteratorBase(){}
	
		IteratorBase(View& view, std::size_t position)
		: mpe_view(&view),m_position(position) {}
	
		template<class R,class V>
		IteratorBase(IteratorBase<R,V> const& other)
		: mpe_view(other.mpe_view),m_position(other.position){}
		
		/// \brief returns the position of the element referenced by the iterator inside the dataset
		///
		/// This is usefull for bagging, when identical elements between several susbsets are to be identified
		std::size_t index()const{
			return mpe_view->index(m_position);
		}

	private:
		friend class SHARK_ITERATOR_CORE_ACCESS;
		template <class, class> friend class IteratorBase;

		void increment() {
			++m_position;
		}
		void decrement() {
			--m_position;
		}

		void advance(std::ptrdiff_t n){
			m_position+=n;
		}
	
		template<class R,class V>
		std::ptrdiff_t distance_to(IteratorBase<R,V> const& other) const{
			return (std::ptrdiff_t)other.m_position - (std::ptrdiff_t)m_position;
		}
	
		template<class R,class V>
		bool equal(IteratorBase<R,V> const& other) const{
			return m_position == other.m_position;
		}
		Reference dereference() const { 
			return (*mpe_view)[m_position];
		}

		View* mpe_view;
		std::size_t m_position;
	};
public:
	typedef IteratorBase<reference,DataView<DatasetType> > iterator;
	typedef IteratorBase<const_reference, DataView<DatasetType> const > const_iterator;

	DataView(){}
	DataView(DatasetType& dataset)
	:m_dataset(dataset),m_indices(dataset.numberOfElements())
	{
		std::size_t index = 0;
		for(std::size_t i = 0; i != dataset.numberOfBatches(); ++i){
			std::size_t batchSize = shark::size(dataset.batch(i));
			for(std::size_t j = 0; j != batchSize; ++j,++index){
				m_indices[index].batch = i;
				m_indices[index].positionInBatch = j;
				m_indices[index].datasetIndex = index;
			}
		}
	}

	/// create a subset of the dataset type using only the elemnt indexed by indices
	template<class IndexRange>
	DataView(DataView<DatasetType> const& view, IndexRange const& indices)
	:m_dataset(view.m_dataset),m_indices(shark::size(indices))
	{
		for(std::size_t i = 0; i != m_indices.size(); ++i)
			m_indices[i] = view.m_indices[indices[i]];
	}

	reference operator[](std::size_t position){
		SIZE_CHECK(position < size());
		Index const& index = m_indices[position];
		return get(m_dataset.batch(index.batch),index.positionInBatch);
	}
	const_reference operator[](std::size_t position) const{
		SIZE_CHECK(position < size());
		Index const& index = m_indices[position];
		return get(m_dataset.batch(index.batch),index.positionInBatch);
	}
	/// \brief returns the position of the element inside the dataset
	///
	/// This is useful for bagging, when identical elements among
	/// several subsets are to be identified.
	std::size_t index(std::size_t position)const{
		return m_indices[position].datasetIndex;
	}

	std::size_t size() const{
		return m_indices.size();
	}

	iterator begin(){
		return iterator(*this, 0);
	}
	const_iterator begin() const{
		return const_iterator(*this, 0);
	}
	iterator end(){
		return iterator(*this, size());
	}
	const_iterator end() const{
		return const_iterator(*this, size());
	}
	
	dataset_type const& dataset()const{
		return m_dataset;
	}
private:
	dataset_type m_dataset;
	// Stores for an element of the dataset, at which position of which batch it is located
	// as well as the real index of the element inside the dataset
	struct Index{
		std::size_t batch;//the batch in which the element is located
		std::size_t positionInBatch;//at which position in the batch it is
		std::size_t datasetIndex;//index inside the dataset
	};
	std::vector<Index> m_indices;//stores for every element of the set it's position inside the dataset
};

/// \brief creates a subset of a DataView with elements indexed by indices
///
/// \param view the view for which the subset is to be created
/// \param indizes the index of the elements to be stored in the view 
template<class DatasetType,class IndexRange>
DataView<DatasetType> subset(DataView<DatasetType> const& view, IndexRange const& indizes){
	//O.K. todo: Remove constructor later on, this is a quick fix.
	return DataView<DatasetType>(view,indizes);
}

/// \brief creates a random subset of a DataView with given size
///
/// \param view the view for which the subset is to be created
/// \param size the size of the subset
template<class DatasetType>
DataView<DatasetType> randomSubset(DataView<DatasetType> const& view, std::size_t size){
	std::vector<std::size_t> indices(view.size());
	boost::iota(indices,0);
	partial_shuffle(indices.begin(),indices.begin()+size,indices.end());
	return subset(view,boost::make_iterator_range(indices.begin(),indices.begin()+size));
}

/// \brief Creates a batch given a set of indices
///
/// \param view the view from which the batch is to be created
/// \param indizes the set of indizes defining the batch
template<class DatasetType,class IndexRange>
typename DataView<DatasetType>::batch_type subBatch(
	DataView<DatasetType> const& view, 
	IndexRange const& indizes
){
	//create a subset of the view containing the elements of the batch
	DataView<DatasetType> batchElems = subset(view,indizes);
	
	//and now use the batch range construction to create it
	return Batch<typename DatasetType::element_type>::createBatch(batchElems);
}

/// \brief Creates a random batch of a given size
///
/// \param view the view from which the batch is to be created
/// \param size the size of the batch
template<class DatasetType>
typename DataView<DatasetType>::batch_type randomSubBatch(
	DataView<DatasetType> const& view, 
	std::size_t size
){
	std::vector<std::size_t> indices(view.size());
	boost::iota(indices,0);
	partial_shuffle(indices.begin(),indices.begin()+size,indices.end());
	return subBatch(view,boost::make_iterator_range(indices.begin(),indices.begin()+size));
}

/// \brief Creates a View from a dataset.
///
/// This is just a helper function to omit the actual type of the view
///
/// \param set the dataset from which to create the view
template<class DatasetType>
DataView<DatasetType>  toView(DatasetType& set){
	return DataView<DatasetType>(set);
}

/// \brief Creates a new dataset from a View.
///
/// When the elements of a View needs to be processed repeatedly it is often better to use
/// the packed format of the Dataset again, since then the faster batch processing can be used
///
/// \param view the view from which to create the new dataset
/// \param batchSize the size of the batches in the dataset
template<class T>
typename DataView<T>::dataset_type 
toDataset(DataView<T> const& view, std::size_t batchSize = DataView<T>::dataset_type::DefaultBatchSize){
	if(view.size() == 0)
		return typename DataView<T>::dataset_type();
	//O.K. todo: this is slow for sparse elements, use subBatch or something similar.
	std::size_t elements = view.size();
	typename DataView<T>::dataset_type dataset(elements,view[0],batchSize);
	std::size_t batches = dataset.numberOfBatches();
	
	std::size_t element = 0;
	for(std::size_t i = 0; i != batches; ++i){
		std::size_t batchSize = shark::size(dataset.batch(i));
		for(std::size_t j = 0; j != batchSize; ++j, ++element){
			get(dataset.batch(i),j) = view[element];
		}
	}
	return dataset;
}

/// Return the number of classes (size of the label vector)
/// of a classification dataset with RealVector label encoding.
template <class DatasetType>
std::size_t numberOfClasses(DataView<DatasetType> const& view){
	return numberOfClasses(view.dataset());
}

/// Return the input dimensionality of the labeled dataset represented by the view
template <class DatasetType>
std::size_t inputDimension(DataView<DatasetType> const& view){
	return inputDimension(view.dataset());
}
/// Return the label dimensionality of the labeled dataset represented by the view
template <class DatasetType>
std::size_t labelDimension(DataView<DatasetType> const& view){
	return labelDimension(view.dataset());
}

/// Return the dimensionality of the dataset represented by the view
template <class DatasetType>
std::size_t dataDimension(DataView<DatasetType> const& view){
	return dataDimension(view.dataset());
}


/** @*/
}
#endif