This file is indexed.

/usr/include/root/TMVA/MethodCFMlpANN.h is in libroot-tmva-dev 5.34.30-0ubuntu8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
// @(#)root/tmva $Id$    
// Author: Andreas Hoecker, Joerg Stelzer, Helge Voss, Kai Voss 

/**********************************************************************************
 * Project: TMVA - a Root-integrated toolkit for multivariate data analysis       *
 * Package: TMVA                                                                  *
 * Class  : MethodCFMlpANN                                                        *
 * Web    : http://tmva.sourceforge.net                                           *
 *                                                                                *
 * Description:                                                                   *
 *      Interface for Clermond-Ferrand artificial neural network.                 *
 *      The ANN code has been translated from FORTRAN77 (f2c);                    *
 *      see files: MethodCFMlpANN_f2c_mlpl3.cpp                                   *
 *                 MethodCFMlpANN_f2c_datacc.cpp                                  *
 *                                                                                *
 *      --------------------------------------------------------------------      *
 *      Reference for the original FORTRAN version:                               *
 *           Authors  : J. Proriol and contributions from ALEPH-Clermont-Fd       *
 *                      Team members. Contact : gaypas@afal11.cern.ch             *
 *                                                                                *
 *           Copyright: Laboratoire Physique Corpusculaire                        *
 *                      Universite de Blaise Pascal, IN2P3/CNRS                   *
 *      --------------------------------------------------------------------      *
 *                                                                                *
 * Usage: options are given through Factory:                                      *
 *            factory->BookMethod( "MethodCFMlpANN", OptionsString );             *
 *                                                                                *
 *        where:                                                                  *
 *            TString OptionsString = "n_training_cycles:n_hidden_layers"         *
 *                                                                                *
 *        default is:  n_training_cycles = 5000, n_layers = 4                     *
 *        note that the number of hidden layers in the NN is                      *
 *                                                                                *
 *            n_hidden_layers = n_layers - 2                                      *
 *                                                                                *
 *        since there is one input and one output layer. The number of            *
 *        nodes (neurons) is predefined to be                                     *
 *                                                                                *
 *           n_nodes[i] = nvars + 1 - i (where i=1..n_layers)                     *
 *                                                                                *
 *        with nvars being the number of variables used in the NN.                *
 *        Hence, the default case is: n_neurons(layer 1 (input)) : nvars          *
 *                                    n_neurons(layer 2 (hidden)): nvars-1        *
 *                                    n_neurons(layer 3 (hidden)): nvars-1        *
 *                                    n_neurons(layer 4 (out))   : 2              *
 *                                                                                *
 *        This artificial neural network usually needs a relatively large         *
 *        number of cycles to converge (8000 and more). Overtraining can          *
 *        be efficienctly tested by comparing the signal and background           *
 *        output of the NN for the events that were used for training and         *
 *        an independent data sample (with equal properties). If the separation   *
 *        performance is significantly better for the training sample, the        *
 *        NN interprets statistical effects, and is hence overtrained. In         * 
 *        this case, the number of cycles should be reduced, or the size          *
 *        of the training sample increased.                                       *
 *                                                                                *
 * Authors (alphabetical):                                                        *
 *      Andreas Hoecker <Andreas.Hocker@cern.ch> - CERN, Switzerland              *
 *      Xavier Prudent  <prudent@lapp.in2p3.fr>  - LAPP, France                   *
 *      Helge Voss      <Helge.Voss@cern.ch>     - MPI-K Heidelberg, Germany      *
 *      Kai Voss        <Kai.Voss@cern.ch>       - U. of Victoria, Canada         *
 *                                                                                *
 * Copyright (c) 2005:                                                            *
 *      CERN, Switzerland                                                         * 
 *      U. of Victoria, Canada                                                    * 
 *      MPI-K Heidelberg, Germany                                                 * 
 *      LAPP, Annecy, France                                                      *
 *                                                                                *
 * Redistribution and use in source and binary forms, with or without             *
 * modification, are permitted according to the terms listed in LICENSE           *
 * (http://tmva.sourceforge.net/LICENSE)                                          *
 *                                                                                *
 **********************************************************************************/

#ifndef ROOT_TMVA_MethodCFMlpANN
#define ROOT_TMVA_MethodCFMlpANN

//////////////////////////////////////////////////////////////////////////
//                                                                      //
// MethodCFMlpANN                                                       //
//                                                                      //
// Interface for Clermond-Ferrand artificial neural network             //
//                                                                      //
//////////////////////////////////////////////////////////////////////////

#include <iosfwd>

#ifndef ROOT_TMVA_MethodBase
#include "TMVA/MethodBase.h"
#endif
#ifndef ROOT_TMVA_MethodCFMlpANN_Utils
#include "TMVA/MethodCFMlpANN_Utils.h"
#endif
#ifndef ROOT_TMatrixF
#include "TMatrixF.h"
#endif

namespace TMVA {

   class MethodCFMlpANN : public MethodBase, MethodCFMlpANN_Utils {

   public:

      MethodCFMlpANN( const TString& jobName,
                      const TString& methodTitle, 
                      DataSetInfo& theData,
                      const TString& theOption = "3000:N-1:N-2",
                      TDirectory* theTargetDir = 0 );

      MethodCFMlpANN( DataSetInfo& theData, 
                      const TString& theWeightFile,  
                      TDirectory* theTargetDir = NULL );

      virtual ~MethodCFMlpANN( void );
    
      virtual Bool_t HasAnalysisType( Types::EAnalysisType type, UInt_t numberClasses, UInt_t /*numberTargets*/ );

      // training method
      void Train( void );

      using MethodBase::ReadWeightsFromStream;

      // write weights to file
      void AddWeightsXMLTo( void* parent ) const;

      // read weights from file
      void ReadWeightsFromStream( std::istream& istr );
      void ReadWeightsFromXML( void* wghtnode );
      // calculate the MVA value
      Double_t GetMvaValue( Double_t* err = 0, Double_t* errUpper = 0 );

      // data accessors for external functions
      Double_t GetData ( Int_t isel, Int_t ivar ) const { return (*fData)(isel, ivar); }
      Int_t    GetClass( Int_t ivar             ) const { return (*fClass)[ivar]; }

      // static pointer to this object (required for external functions
      static MethodCFMlpANN* This( void );

      // ranking of input variables
      const Ranking* CreateRanking() { return 0; }

   protected:

      // make ROOT-independent C++ class for classifier response (classifier-specific implementation)
      void MakeClassSpecific( std::ostream&, const TString& ) const;

      // header and auxiliary classes
      void MakeClassSpecificHeader( std::ostream&, const TString& = "" ) const;

      // get help message text
      void GetHelpMessage() const;

      Int_t DataInterface( Double_t*, Double_t*, Int_t*, Int_t*, Int_t*, Int_t*,
                           Double_t*, Int_t*, Int_t* );
  
   private:

      void PrintWeights( std::ostream & o ) const;

      // the option handling methods
      void DeclareOptions();
      void ProcessOptions();
      
      static MethodCFMlpANN* fgThis; // this carrier

      // LUTs
      TMatrixF       *fData;     // the (data,var) string
      std::vector<Int_t> *fClass;    // the event class (1=signal, 2=background)

      Int_t         fNlayers;   // number of layers (including input and output layers)
      Int_t         fNcycles;   // number of training cycles
      Int_t*        fNodes;     // number of nodes per layer

      // additional member variables for the independent NN::Evaluation phase
      Double_t**    fYNN;       // weights
      TString       fLayerSpec; // the hidden layer specification string

      // auxiliary member functions
      Double_t EvalANN( std::vector<Double_t>&, Bool_t& isOK );
      void     NN_ava ( Double_t* );
      Double_t NN_fonc( Int_t, Double_t ) const;

      // default initialisation 
      void Init( void );

      ClassDef(MethodCFMlpANN,0) // Interface for Clermond-Ferrand artificial neural network
   };

} // namespace TMVA

#endif