/usr/include/root/RooStats/RatioOfProfiledLikelihoodsTestStat.h is in libroot-roofit-dev 5.34.30-0ubuntu8.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 | // @(#)root/roostats:$Id$
// Authors: Kyle Cranmer, Sven Kreiss June 2010
/*************************************************************************
* Copyright (C) 1995-2008, Rene Brun and Fons Rademakers. *
* All rights reserved. *
* *
* For the licensing terms see $ROOTSYS/LICENSE. *
* For the list of contributors see $ROOTSYS/README/CREDITS. *
*************************************************************************/
#ifndef ROOSTATS_RatioOfProfiledLikelihoodsTestStat
#define ROOSTATS_RatioOfProfiledLikelihoodsTestStat
//_________________________________________________
/*
BEGIN_HTML
<p>
TestStatistic that returns the ratio of profiled likelihoods.
</p>
END_HTML
*/
//
#ifndef ROOT_Rtypes
#include "Rtypes.h"
#endif
#ifndef ROO_NLL_VAR
#include "RooNLLVar.h"
#endif
#ifndef ROOSTATS_TestStatistic
#include "RooStats/TestStatistic.h"
#endif
#ifndef ROOSTATS_ProfileLikelihoodTestStat
#include "RooStats/ProfileLikelihoodTestStat.h"
#endif
namespace RooStats {
class RatioOfProfiledLikelihoodsTestStat: public TestStatistic {
public:
RatioOfProfiledLikelihoodsTestStat() :
fNullProfile(),
fAltProfile(),
fAltPOI(NULL),
fSubtractMLE(true),
fDetailedOutputEnabled(false),
fDetailedOutput(NULL)
{
// Proof constructor. Don't use.
}
RatioOfProfiledLikelihoodsTestStat(RooAbsPdf& nullPdf, RooAbsPdf& altPdf,
const RooArgSet* altPOI=0) :
fNullProfile(nullPdf),
fAltProfile(altPdf),
fSubtractMLE(true),
fDetailedOutputEnabled(false),
fDetailedOutput(NULL)
{
/*
Calculates the ratio of profiled likelihoods.
By default the calculation is:
Lambda(mu_alt , conditional MLE for alt nuisance)
log --------------------------------------------
Lambda(mu_null , conditional MLE for null nuisance)
where Lambda is the profile likeihood ratio, so the
MLE for the null and alternate are subtracted off.
If SetSubtractMLE(false) then it calculates:
L(mu_alt , conditional MLE for alt nuisance)
log --------------------------------------------
L(mu_null , conditional MLE for null nuisance)
The values of the parameters of interest for the alternative
hypothesis are taken at the time of the construction.
If empty, it treats all free parameters as nuisance parameters.
The value of the parameters of interest for the null hypotheses
are given at each call of Evaluate(data,nullPOI).
*/
if(altPOI)
fAltPOI = (RooArgSet*) altPOI->snapshot();
else
fAltPOI = new RooArgSet(); // empty set
}
//__________________________________________
~RatioOfProfiledLikelihoodsTestStat(void) {
if(fAltPOI) delete fAltPOI;
if(fDetailedOutput) delete fDetailedOutput;
}
// returns -logL(poi, conditional MLE of nuisance params)
// it does not subtract off the global MLE
// because nuisance parameters of null and alternate may not
// be the same.
Double_t ProfiledLikelihood(RooAbsData& data, RooArgSet& poi, RooAbsPdf& pdf);
// evaluate the ratio of profile likelihood
virtual Double_t Evaluate(RooAbsData& data, RooArgSet& nullParamsOfInterest);
virtual void EnableDetailedOutput( bool e=true ) {
fDetailedOutputEnabled = e;
fNullProfile.EnableDetailedOutput(fDetailedOutputEnabled);
fAltProfile.EnableDetailedOutput(fDetailedOutputEnabled);
}
static void SetAlwaysReuseNLL(Bool_t flag);
void SetReuseNLL(Bool_t flag) {
fNullProfile.SetReuseNLL(flag);
fAltProfile.SetReuseNLL(flag);
}
void SetMinimizer(const char* minimizer){
fNullProfile.SetMinimizer(minimizer);
fAltProfile.SetMinimizer(minimizer);
}
void SetStrategy(Int_t strategy){
fNullProfile.SetStrategy(strategy);
fAltProfile.SetStrategy(strategy);
}
void SetTolerance(Double_t tol){
fNullProfile.SetTolerance(tol);
fAltProfile.SetTolerance(tol);
}
void SetPrintLevel(Int_t printLevel){
fNullProfile.SetPrintLevel(printLevel);
fAltProfile.SetPrintLevel(printLevel);
}
// set the conditional observables which will be used when creating the NLL
// so the pdf's will not be normalized on the conditional observables when computing the NLL
virtual void SetConditionalObservables(const RooArgSet& set) {
fNullProfile.SetConditionalObservables(set);
fAltProfile.SetConditionalObservables(set);
}
virtual const RooArgSet* GetDetailedOutput(void) const {
// Returns detailed output. The value returned by this function is updated after each call to Evaluate().
// The returned RooArgSet contains the following for the alternative and null hypotheses:
// <ul>
// <li> the minimum nll, fitstatus and convergence quality for each fit </li>
// <li> for each fit and for each non-constant parameter, the value, error and pull of the parameter are stored </li>
// </ul>
return fDetailedOutput;
}
virtual const TString GetVarName() const { return "log(L(#mu_{1},#hat{#nu}_{1}) / L(#mu_{0},#hat{#nu}_{0}))"; }
// const bool PValueIsRightTail(void) { return false; } // overwrites default
void SetSubtractMLE(bool subtract){fSubtractMLE = subtract;}
private:
ProfileLikelihoodTestStat fNullProfile;
ProfileLikelihoodTestStat fAltProfile;
RooArgSet* fAltPOI;
Bool_t fSubtractMLE;
static Bool_t fgAlwaysReuseNll ;
bool fDetailedOutputEnabled;
RooArgSet* fDetailedOutput;
protected:
ClassDef(RatioOfProfiledLikelihoodsTestStat,3) // implements the ratio of profiled likelihood as test statistic
};
}
#endif
|