/usr/include/root/TVirtualMC.h is in libroot-montecarlo-vmc-dev 5.34.30-0ubuntu8.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 | // @(#)root/vmc:$Name: $:$Id$
// Authors: Ivana Hrivnacova, Rene Brun, Federico Carminati 13/04/2002
/*************************************************************************
* Copyright (C) 2006, Rene Brun and Fons Rademakers. *
* Copyright (C) 2002, ALICE Experiment at CERN. *
* All rights reserved. *
* *
* For the licensing terms see $ROOTSYS/LICENSE. *
* For the list of contributors see $ROOTSYS/README/CREDITS. *
*************************************************************************/
#ifndef ROOT_TVirtualMC
#define ROOT_TVirtualMC
///////////////////////////////////////////////////////////////////////////////
// //
// //
// Abstract Monte Carlo interface //
// //
// //
///////////////////////////////////////////////////////////////////////////////
#include "TMCProcess.h"
#include "TMCParticleType.h"
#include "TMCOptical.h"
#include "TMCtls.h"
#include "TVirtualMCApplication.h"
#include "TVirtualMCStack.h"
#include "TVirtualMCDecayer.h"
#include "TVirtualMagField.h"
#include "TRandom.h"
#include "TString.h"
#include "TError.h"
class TLorentzVector;
class TGeoHMatrix;
class TArrayI;
class TArrayD;
class TVirtualMC : public TNamed {
public:
// Standard constructor
// isRootGeometrySupported = True if implementation of TVirtualMC
// supports geometry defined with TGeo
TVirtualMC(const char *name, const char *title,
Bool_t isRootGeometrySupported = kFALSE);
// Default constructor
TVirtualMC();
// Destructor
virtual ~TVirtualMC();
// Static access method
static TVirtualMC* GetMC();
//
// ------------------------------------------------
// methods for building/management of geometry
// ------------------------------------------------
//
// Info about supporting geometry defined via Root
virtual Bool_t IsRootGeometrySupported() const = 0;
//
// functions from GCONS
// ------------------------------------------------
//
// Define a material
// kmat number assigned to the material
// name material name
// a atomic mass in au
// z atomic number
// dens density in g/cm3
// absl absorption length in cm;
// if >=0 it is ignored and the program
// calculates it, if <0. -absl is taken
// radl radiation length in cm
// if >=0 it is ignored and the program
// calculates it, if <0. -radl is taken
// buf pointer to an array of user words
// nwbuf number of user words
virtual void Material(Int_t& kmat, const char* name, Double_t a,
Double_t z, Double_t dens, Double_t radl, Double_t absl,
Float_t* buf, Int_t nwbuf) = 0;
// The same as previous but in double precision
virtual void Material(Int_t& kmat, const char* name, Double_t a,
Double_t z, Double_t dens, Double_t radl, Double_t absl,
Double_t* buf, Int_t nwbuf) = 0;
// Define mixture or compound
// with a number kmat composed by the basic nlmat materials defined
// by arrays a, z and wmat
//
// If nlmat > 0 then wmat contains the proportion by
// weights of each basic material in the mixture.
//
// If nlmat < 0 then wmat contains the number of atoms
// of a given kind into the molecule of the compound.
// In this case, wmat in output is changed to relative
// weights.
virtual void Mixture(Int_t& kmat, const char *name, Float_t *a,
Float_t *z, Double_t dens, Int_t nlmat, Float_t *wmat) = 0;
// The same as previous but in double precision
virtual void Mixture(Int_t& kmat, const char *name, Double_t *a,
Double_t *z, Double_t dens, Int_t nlmat, Double_t *wmat) = 0;
// Define a medium.
// kmed tracking medium number assigned
// name tracking medium name
// nmat material number
// isvol sensitive volume flag
// ifield magnetic field:
// - ifield = 0 if no magnetic field;
// - ifield = -1 if user decision in guswim;
// - ifield = 1 if tracking performed with g3rkuta;
// - ifield = 2 if tracking performed with g3helix;
// - ifield = 3 if tracking performed with g3helx3.
// fieldm max. field value (kilogauss)
// tmaxfd max. angle due to field (deg/step)
// stemax max. step allowed
// deemax max. fraction of energy lost in a step
// epsil tracking precision (cm)
// stmin min. step due to continuous processes (cm)
// ubuf pointer to an array of user words
// nbuf number of user words
virtual void Medium(Int_t& kmed, const char *name, Int_t nmat,
Int_t isvol, Int_t ifield, Double_t fieldm, Double_t tmaxfd,
Double_t stemax, Double_t deemax, Double_t epsil,
Double_t stmin, Float_t* ubuf, Int_t nbuf) = 0;
// The same as previous but in double precision
virtual void Medium(Int_t& kmed, const char *name, Int_t nmat,
Int_t isvol, Int_t ifield, Double_t fieldm, Double_t tmaxfd,
Double_t stemax, Double_t deemax, Double_t epsil,
Double_t stmin, Double_t* ubuf, Int_t nbuf) = 0;
// Define a rotation matrix
// krot rotation matrix number assigned
// thetaX polar angle for axis X
// phiX azimuthal angle for axis X
// thetaY polar angle for axis Y
// phiY azimuthal angle for axis Y
// thetaZ polar angle for axis Z
// phiZ azimuthal angle for axis Z
virtual void Matrix(Int_t& krot, Double_t thetaX, Double_t phiX,
Double_t thetaY, Double_t phiY, Double_t thetaZ,
Double_t phiZ) = 0;
// Change the value of cut or mechanism param
// to a new value parval for tracking medium itmed.
// In Geant3, the data structure JTMED contains the standard tracking
// parameters (CUTS and flags to control the physics processes) which
// are used by default for all tracking media.
// It is possible to redefine individually with this function any of these
// parameters for a given tracking medium.
// itmed tracking medium number
// param is a character string (variable name)
// parval must be given as a floating point.
virtual void Gstpar(Int_t itmed, const char *param, Double_t parval) = 0;
//
// functions from GGEOM
// ------------------------------------------------
//
// Create a new volume
// name Volume name
// shape Volume type
// nmed Tracking medium number
// np Number of shape parameters
// upar Vector containing shape parameters
virtual Int_t Gsvolu(const char *name, const char *shape, Int_t nmed,
Float_t *upar, Int_t np) = 0;
// The same as previous but in double precision
virtual Int_t Gsvolu(const char *name, const char *shape, Int_t nmed,
Double_t *upar, Int_t np) = 0;
// Create a new volume by dividing an existing one.
// It divides a previously defined volume
// name Volume name
// mother Mother volume name
// ndiv Number of divisions
// iaxis Axis value:
// X,Y,Z of CAXIS will be translated to 1,2,3 for IAXIS.
virtual void Gsdvn(const char *name, const char *mother, Int_t ndiv,
Int_t iaxis) = 0;
// Create a new volume by dividing an existing one.
// Divide mother into ndiv divisions called name
// along axis iaxis starting at coordinate value c0i.
// The new volume created will be medium number numed.
virtual void Gsdvn2(const char *name, const char *mother, Int_t ndiv,
Int_t iaxis, Double_t c0i, Int_t numed) = 0;
// Create a new volume by dividing an existing one
// Divide mother into divisions called name along
// axis iaxis in steps of step. If not exactly divisible
// will make as many as possible and will center them
// with respect to the mother. Divisions will have medium
// number numed. If numed is 0, numed of mother is taken.
// ndvmx is the expected maximum number of divisions
// (If 0, no protection tests are performed in Geant3)
virtual void Gsdvt(const char *name, const char *mother, Double_t step,
Int_t iaxis, Int_t numed, Int_t ndvmx) = 0;
// Create a new volume by dividing an existing one
// Divides mother into divisions called name along
// axis iaxis starting at coordinate value c0 with step
// size step.
// The new volume created will have medium number numed.
// If numed is 0, numed of mother is taken.
// ndvmx is the expected maximum number of divisions
// (If 0, no protection tests are performed in Geant3)
virtual void Gsdvt2(const char *name, const char *mother, Double_t step,
Int_t iaxis, Double_t c0, Int_t numed, Int_t ndvmx) = 0;
// Flag volume name whose contents will have to be ordered
// along axis iax, by setting the search flag to -iax
// (Geant3 only)
virtual void Gsord(const char *name, Int_t iax) = 0;
// Position a volume into an existing one.
// It positions a previously defined volume in the mother.
// name Volume name
// nr Copy number of the volume
// mother Mother volume name
// x X coord. of the volume in mother ref. sys.
// y Y coord. of the volume in mother ref. sys.
// z Z coord. of the volume in mother ref. sys.
// irot Rotation matrix number w.r.t. mother ref. sys.
// konly ONLY/MANY flag
virtual void Gspos(const char *name, Int_t nr, const char *mother,
Double_t x, Double_t y, Double_t z, Int_t irot,
const char *konly="ONLY") = 0;
// Place a copy of generic volume name with user number
// nr inside mother, with its parameters upar(1..np)
virtual void Gsposp(const char *name, Int_t nr, const char *mother,
Double_t x, Double_t y, Double_t z, Int_t irot,
const char *konly, Float_t *upar, Int_t np) = 0;
// The same as previous but in double precision
virtual void Gsposp(const char *name, Int_t nr, const char *mother,
Double_t x, Double_t y, Double_t z, Int_t irot,
const char *konly, Double_t *upar, Int_t np) = 0;
// Helper function for resolving MANY.
// Specify the ONLY volume that overlaps with the
// specified MANY and has to be substracted.
// (Geant4 only)
virtual void Gsbool(const char* onlyVolName, const char* manyVolName) = 0;
// Define the tables for UV photon tracking in medium itmed.
// Please note that it is the user's responsibility to
// provide all the coefficients:
// itmed Tracking medium number
// npckov Number of bins of each table
// ppckov Value of photon momentum (in GeV)
// absco Absorption coefficients
// dielectric: absorption length in cm
// metals : absorption fraction (0<=x<=1)
// effic Detection efficiency for UV photons
// rindex Refraction index (if=0 metal)
virtual void SetCerenkov(Int_t itmed, Int_t npckov, Float_t *ppckov,
Float_t *absco, Float_t *effic, Float_t *rindex) = 0;
// The same as previous but in double precision
virtual void SetCerenkov(Int_t itmed, Int_t npckov, Double_t *ppckov,
Double_t *absco, Double_t *effic, Double_t *rindex) = 0;
//
// functions for definition of surfaces
// and material properties for optical physics
// ------------------------------------------------
//
// Define the optical surface
// name surface name
// model selection of model (see #EMCOpSurfaceModel values)
// surfaceType surface type (see #EMCOpSurfaceType values)
// surfaceFinish surface quality (see #EMCOpSurfaceType values)
// sigmaAlpha an unified model surface parameter
// (Geant4 only)
virtual void DefineOpSurface(const char* name,
EMCOpSurfaceModel model,
EMCOpSurfaceType surfaceType,
EMCOpSurfaceFinish surfaceFinish,
Double_t sigmaAlpha) = 0;
// Define the optical surface border
// name border surface name
// vol1Name first volume name
// vol1CopyNo first volume copy number
// vol2Name second volume name
// vol2CopyNo second volume copy number
// opSurfaceName name of optical surface which this border belongs to
// (Geant4 only)
virtual void SetBorderSurface(const char* name,
const char* vol1Name, int vol1CopyNo,
const char* vol2Name, int vol2CopyNo,
const char* opSurfaceName) = 0;
// Define the optical skin surface
// name skin surface name
// volName volume name
// opSurfaceName name of optical surface which this border belongs to
// (Geant4 only)
virtual void SetSkinSurface(const char* name,
const char* volName,
const char* opSurfaceName) = 0;
// Define material property via a table of values
// itmed tracking medium id
// propertyName property name
// np number of bins of the table
// pp value of photon momentum (in GeV)
// values property values
// (Geant4 only)
virtual void SetMaterialProperty(
Int_t itmed, const char* propertyName,
Int_t np, Double_t* pp, Double_t* values) = 0;
// Define material property via a value
// itmed tracking medium id
// propertyName property name
// value property value
// (Geant4 only)
virtual void SetMaterialProperty(
Int_t itmed, const char* propertyName,
Double_t value) = 0;
// Define optical surface property via a table of values
// surfaceName optical surface name
// propertyName property name
// np number of bins of the table
// pp value of photon momentum (in GeV)
// values property values
// (Geant4 only)
virtual void SetMaterialProperty(
const char* surfaceName, const char* propertyName,
Int_t np, Double_t* pp, Double_t* values) = 0;
//
// functions for access to geometry
// ------------------------------------------------
//
// Return the transformation matrix between the volume specified by
// the path volumePath and the top or master volume.
virtual Bool_t GetTransformation(const TString& volumePath,
TGeoHMatrix& matrix) = 0;
// Return the name of the shape (shapeType) and its parameters par
// for the volume specified by the path volumePath .
virtual Bool_t GetShape(const TString& volumePath,
TString& shapeType, TArrayD& par) = 0;
// Return the material parameters for the material specified by
// the material Id
virtual Bool_t GetMaterial(Int_t imat, TString& name,
Double_t& a, Double_t& z, Double_t& density,
Double_t& radl, Double_t& inter, TArrayD& par) = 0;
// Return the material parameters for the volume specified by
// the volumeName.
virtual Bool_t GetMaterial(const TString& volumeName,
TString& name, Int_t& imat,
Double_t& a, Double_t& z, Double_t& density,
Double_t& radl, Double_t& inter, TArrayD& par) = 0;
// Return the medium parameters for the volume specified by the
// volumeName.
virtual Bool_t GetMedium(const TString& volumeName,
TString& name, Int_t& imed,
Int_t& nmat, Int_t& isvol, Int_t& ifield,
Double_t& fieldm, Double_t& tmaxfd, Double_t& stemax,
Double_t& deemax, Double_t& epsil, Double_t& stmin,
TArrayD& par) = 0;
// Write out the geometry of the detector in EUCLID file format
// filnam file name - will be with the extension .euc *
// topvol volume name of the starting node
// number copy number of topvol (relevant for gsposp)
// nlevel number of levels in the tree structure
// to be written out, starting from topvol
// (Geant3 only)
// Deprecated
virtual void WriteEuclid(const char* filnam, const char* topvol,
Int_t number, Int_t nlevel) = 0;
// Set geometry from Root (built via TGeo)
virtual void SetRootGeometry() = 0;
// Activate the parameters defined in tracking media
// (DEEMAX, STMIN, STEMAX), which are, be default, ignored.
// In Geant4 case, only STEMAX is taken into account.
// In FLUKA, all tracking media parameters are ignored.
virtual void SetUserParameters(Bool_t isUserParameters) = 0;
//
// get methods
// ------------------------------------------------
//
// Return the unique numeric identifier for volume name volName
virtual Int_t VolId(const char* volName) const = 0;
// Return the volume name for a given volume identifier id
virtual const char* VolName(Int_t id) const = 0;
// Return the unique numeric identifier for medium name mediumName
virtual Int_t MediumId(const char* mediumName) const = 0;
// Return total number of volumes in the geometry
virtual Int_t NofVolumes() const = 0;
// Return material number for a given volume id
virtual Int_t VolId2Mate(Int_t id) const = 0;
// Return number of daughters of the volume specified by volName
virtual Int_t NofVolDaughters(const char* volName) const = 0;
// Return the name of i-th daughter of the volume specified by volName
virtual const char* VolDaughterName(const char* volName, Int_t i) const = 0;
// Return the copyNo of i-th daughter of the volume specified by volName
virtual Int_t VolDaughterCopyNo(const char* volName, Int_t i) const = 0;
//
// ------------------------------------------------
// methods for physics management
// ------------------------------------------------
//
//
// set methods
// ------------------------------------------------
//
// Set transport cuts for particles
virtual Bool_t SetCut(const char* cutName, Double_t cutValue) = 0;
// Set process control
virtual Bool_t SetProcess(const char* flagName, Int_t flagValue) = 0;
// Set a user defined particle
// Function is ignored if particle with specified pdg
// already exists and error report is printed.
// pdg PDG encoding
// name particle name
// mcType VMC Particle type
// mass mass [GeV]
// charge charge [eplus]
// lifetime time of life [s]
// pType particle type as in Geant4
// width width [GeV]
// iSpin spin
// iParity parity
// iConjugation conjugation
// iIsospin isospin
// iIsospinZ isospin - #rd component
// gParity gParity
// lepton lepton number
// baryon baryon number
// stable stability
// shortlived is shorlived?
// subType particle subType as in Geant4
// antiEncoding anti encoding
// magMoment magnetic moment
// excitation excitation energy [GeV]
virtual Bool_t DefineParticle(Int_t pdg, const char* name,
TMCParticleType mcType,
Double_t mass, Double_t charge, Double_t lifetime) = 0;
// Set a user defined particle
// Function is ignored if particle with specified pdg
// already exists and error report is printed.
// pdg PDG encoding
// name particle name
// mcType VMC Particle type
// mass mass [GeV]
// charge charge [eplus]
// lifetime time of life [s]
// pType particle type as in Geant4
// width width [GeV]
// iSpin spin
// iParity parity
// iConjugation conjugation
// iIsospin isospin
// iIsospinZ isospin - #rd component
// gParity gParity
// lepton lepton number
// baryon baryon number
// stable stability
// shortlived is shorlived?
// subType particle subType as in Geant4
// antiEncoding anti encoding
// magMoment magnetic moment
// excitation excitation energy [GeV]
virtual Bool_t DefineParticle(Int_t pdg, const char* name,
TMCParticleType mcType,
Double_t mass, Double_t charge, Double_t lifetime,
const TString& pType, Double_t width,
Int_t iSpin, Int_t iParity, Int_t iConjugation,
Int_t iIsospin, Int_t iIsospinZ, Int_t gParity,
Int_t lepton, Int_t baryon,
Bool_t stable, Bool_t shortlived = kFALSE,
const TString& subType = "",
Int_t antiEncoding = 0, Double_t magMoment = 0.0,
Double_t excitation = 0.0) = 0;
// Set a user defined ion.
// name ion name
// Z atomic number
// A atomic mass
// Q charge [eplus}
// excitation excitation energy [GeV]
// mass mass [GeV] (if not specified by user, approximative
// mass is calculated)
virtual Bool_t DefineIon(const char* name, Int_t Z, Int_t A,
Int_t Q, Double_t excEnergy, Double_t mass = 0.) = 0;
// Set a user phase space decay for a particle
// pdg particle PDG encoding
// bratios the array with branching ratios (in %)
// mode[6][3] the array with daughters particles PDG codes for each
// decay channel
virtual Bool_t SetDecayMode(Int_t pdg, Float_t bratio[6], Int_t mode[6][3]) = 0;
// Calculate X-sections
// (Geant3 only)
// Deprecated
virtual Double_t Xsec(char*, Double_t, Int_t, Int_t) = 0;
//
// particle table usage
// ------------------------------------------------
//
// Return MC specific code from a PDG and pseudo ENDF code (pdg)
virtual Int_t IdFromPDG(Int_t pdg) const =0;
// Return PDG code and pseudo ENDF code from MC specific code (id)
virtual Int_t PDGFromId(Int_t id) const =0;
//
// get methods
// ------------------------------------------------
//
// Return name of the particle specified by pdg.
virtual TString ParticleName(Int_t pdg) const = 0;
// Return mass of the particle specified by pdg.
virtual Double_t ParticleMass(Int_t pdg) const = 0;
// Return charge (in e units) of the particle specified by pdg.
virtual Double_t ParticleCharge(Int_t pdg) const = 0;
// Return life time of the particle specified by pdg.
virtual Double_t ParticleLifeTime(Int_t pdg) const = 0;
// Return VMC type of the particle specified by pdg.
virtual TMCParticleType ParticleMCType(Int_t pdg) const = 0;
//
// ------------------------------------------------
// methods for step management
// ------------------------------------------------
//
//
// action methods
// ------------------------------------------------
//
// Stop the transport of the current particle and skip to the next
virtual void StopTrack() = 0;
// Stop simulation of the current event and skip to the next
virtual void StopEvent() = 0;
// Stop simulation of the current event and set the abort run flag to true
virtual void StopRun() = 0;
//
// set methods
// ------------------------------------------------
//
// Set the maximum step allowed till the particle is in the current medium
virtual void SetMaxStep(Double_t) = 0;
// Set the maximum number of steps till the particle is in the current medium
virtual void SetMaxNStep(Int_t) = 0;
// Force the decays of particles to be done with Pythia
// and not with the Geant routines.
virtual void SetUserDecay(Int_t pdg) = 0;
// Force the decay time of the current particle
virtual void ForceDecayTime(Float_t) = 0;
//
// tracking volume(s)
// ------------------------------------------------
//
// Return the current volume ID and copy number
virtual Int_t CurrentVolID(Int_t& copyNo) const =0;
// Return the current volume off upward in the geometrical tree
// ID and copy number
virtual Int_t CurrentVolOffID(Int_t off, Int_t& copyNo) const =0;
// Return the current volume name
virtual const char* CurrentVolName() const =0;
// Return the current volume off upward in the geometrical tree
// name and copy number'
// if name=0 no name is returned
virtual const char* CurrentVolOffName(Int_t off) const =0;
// Return the path in geometry tree for the current volume
virtual const char* CurrentVolPath() = 0;
// If track is on a geometry boundary, fill the normal vector of the crossing
// volume surface and return true, return false otherwise
virtual Bool_t CurrentBoundaryNormal(
Double_t &x, Double_t &y, Double_t &z) const = 0;
// Return the parameters of the current material during transport
virtual Int_t CurrentMaterial(Float_t &a, Float_t &z,
Float_t &dens, Float_t &radl, Float_t &absl) const =0;
// Return the number of the current medium
virtual Int_t CurrentMedium() const = 0;
// new function (to replace GetMedium() const)
// Return the number of the current event
virtual Int_t CurrentEvent() const =0;
// Computes coordinates xd in daughter reference system
// from known coordinates xm in mother reference system.
// xm coordinates in mother reference system (input)
// xd coordinates in daughter reference system (output)
// iflag
// - IFLAG = 1 convert coordinates
// - IFLAG = 2 convert direction cosines
virtual void Gmtod(Float_t* xm, Float_t* xd, Int_t iflag) = 0;
// The same as previous but in double precision
virtual void Gmtod(Double_t* xm, Double_t* xd, Int_t iflag) = 0;
// Computes coordinates xm in mother reference system
// from known coordinates xd in daughter reference system.
// xd coordinates in daughter reference system (input)
// xm coordinates in mother reference system (output)
// iflag
// - IFLAG = 1 convert coordinates
// - IFLAG = 2 convert direction cosines
virtual void Gdtom(Float_t* xd, Float_t* xm, Int_t iflag)= 0 ;
// The same as previous but in double precision
virtual void Gdtom(Double_t* xd, Double_t* xm, Int_t iflag)= 0 ;
// Return the maximum step length in the current medium
virtual Double_t MaxStep() const =0;
// Return the maximum number of steps allowed in the current medium
virtual Int_t GetMaxNStep() const = 0;
//
// get methods
// tracking particle
// dynamic properties
// ------------------------------------------------
//
// Return the current position in the master reference frame of the
// track being transported
virtual void TrackPosition(TLorentzVector& position) const =0;
// Return the current position in the master reference frame of the
// track being transported
virtual void TrackPosition(Double_t &x, Double_t &y, Double_t &z) const =0;
// Return the direction and the momentum (GeV/c) of the track
// currently being transported
virtual void TrackMomentum(TLorentzVector& momentum) const =0;
// Return the direction and the momentum (GeV/c) of the track
// currently being transported
virtual void TrackMomentum(Double_t &px, Double_t &py, Double_t &pz, Double_t &etot) const =0;
// Return the length in centimeters of the current step (in cm)
virtual Double_t TrackStep() const =0;
// Return the length of the current track from its origin (in cm)
virtual Double_t TrackLength() const =0;
// Return the current time of flight of the track being transported
virtual Double_t TrackTime() const =0;
// Return the energy lost in the current step
virtual Double_t Edep() const =0;
//
// get methods
// tracking particle
// static properties
// ------------------------------------------------
//
// Return the PDG of the particle transported
virtual Int_t TrackPid() const =0;
// Return the charge of the track currently transported
virtual Double_t TrackCharge() const =0;
// Return the mass of the track currently transported
virtual Double_t TrackMass() const =0;
// Return the total energy of the current track
virtual Double_t Etot() const =0;
//
// get methods - track status
// ------------------------------------------------
//
// Return true when the track performs the first step
virtual Bool_t IsNewTrack() const =0;
// Return true if the track is not at the boundary of the current volume
virtual Bool_t IsTrackInside() const =0;
// Return true if this is the first step of the track in the current volume
virtual Bool_t IsTrackEntering() const =0;
// Return true if this is the last step of the track in the current volume
virtual Bool_t IsTrackExiting() const =0;
// Return true if the track is out of the setup
virtual Bool_t IsTrackOut() const =0;
// Return true if the current particle has disappeared
// either because it decayed or because it underwent
// an inelastic collision
virtual Bool_t IsTrackDisappeared() const =0;
// Return true if the track energy has fallen below the threshold
virtual Bool_t IsTrackStop() const =0;
// Return true if the current particle is alive and will continue to be
// transported
virtual Bool_t IsTrackAlive() const=0;
//
// get methods - secondaries
// ------------------------------------------------
//
// Return the number of secondary particles generated in the current step
virtual Int_t NSecondaries() const=0;
// Return the parameters of the secondary track number isec produced
// in the current step
virtual void GetSecondary(Int_t isec, Int_t& particleId,
TLorentzVector& position, TLorentzVector& momentum) =0;
// Return the VMC code of the process that has produced the secondary
// particles in the current step
virtual TMCProcess ProdProcess(Int_t isec) const =0;
// Return the array of the VMC code of the processes active in the current
// step
virtual Int_t StepProcesses(TArrayI &proc) const = 0;
// Return the information about the transport order needed by the stack
virtual Bool_t SecondariesAreOrdered() const = 0;
//
// ------------------------------------------------
// Control methods
// ------------------------------------------------
//
// Initialize MC
virtual void Init() = 0;
// Initialize MC physics
virtual void BuildPhysics() = 0;
// Process one event
// Deprecated
virtual void ProcessEvent() = 0;
// Process one run and return true if run has finished successfully,
// return false in other cases (run aborted by user)
virtual Bool_t ProcessRun(Int_t nevent) = 0;
// Set switches for lego transport
virtual void InitLego() = 0;
// (In)Activate collecting TGeo tracks
virtual void SetCollectTracks(Bool_t collectTracks) = 0;
// Return the info if collecting tracks is activated
virtual Bool_t IsCollectTracks() const = 0;
// Return the info if multi-threading is supported/activated
virtual Bool_t IsMT() const { return kFALSE; }
//
// ------------------------------------------------
// Set methods
// ------------------------------------------------
//
// Set the particle stack
virtual void SetStack(TVirtualMCStack* stack);
// Set the external decayer
virtual void SetExternalDecayer(TVirtualMCDecayer* decayer);
// Set the random number generator
virtual void SetRandom(TRandom* random);
// Set the magnetic field
virtual void SetMagField(TVirtualMagField* field);
//
// ------------------------------------------------
// Get methods
// ------------------------------------------------
//
// Return the particle stack
virtual TVirtualMCStack* GetStack() const { return fStack; }
// Return the external decayer
virtual TVirtualMCDecayer* GetDecayer() const { return fDecayer; }
// Return the random number generator
virtual TRandom* GetRandom() const { return fRandom; }
// Return the magnetic field
virtual TVirtualMagField* GetMagField() const { return fMagField; }
protected:
TVirtualMCApplication* fApplication; //! User MC application
private:
TVirtualMC(const TVirtualMC &mc);
TVirtualMC & operator=(const TVirtualMC &);
#if !defined(__CINT__)
static TMCThreadLocal TVirtualMC* fgMC; // Monte Carlo singleton instance
#else
static TVirtualMC* fgMC; // Monte Carlo singleton instance
#endif
TVirtualMCStack* fStack; //! Particles stack
TVirtualMCDecayer* fDecayer; //! External decayer
TRandom* fRandom; //! Random number generator
TVirtualMagField* fMagField;//! Magnetic field
ClassDef(TVirtualMC,1) //Interface to Monte Carlo
};
#if !defined(__CINT__)
R__EXTERN TMCThreadLocal TVirtualMC *gMC;
#else
R__EXTERN TVirtualMC *gMC;
#endif
#endif //ROOT_TVirtualMC
|