/usr/include/root/Math/HelperOps.h is in libroot-math-smatrix-dev 5.34.30-0ubuntu8.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 | // @(#)root/smatrix:$Id$
// Authors: J. Palacios 2006
#ifndef ROOT_Math_HelperOps
#define ROOT_Math_HelperOps 1
// Include files
/** @class HelperOps HelperOps.h Math/HelperOps.h
*
*
* @author Juan PALACIOS
* @date 2006-01-11
*
* Specialised helper classes for binary operators =, +=, -=
* between SMatrices and Expressions with arbitrary representations.
* Specialisations at the moment only for Symmetric LHS and Generic RHS
* and used to throw static assert.
*/
#include "Math/StaticCheck.h"
#include <algorithm> // required by std::copy
namespace ROOT {
namespace Math {
template <class T, unsigned int D1, unsigned int D2, class R>
class SMatrix;
template <class A, class T, unsigned int D1, unsigned int D2, class R>
class Expr;
//=========================================================================
/**
Structure to assign from an expression based to general matrix to general matrix
*/
template <class T,
unsigned int D1, unsigned int D2,
class A, class R1, class R2>
struct Assign
{
/**
Evaluate the expression from general to general matrices.
If the matrix to assign the value is in use in the expression,
a temporary object is created to store the value (case A = B * A)
*/
static void Evaluate(SMatrix<T,D1,D2,R1>& lhs, const Expr<A,T,D1,D2,R2>& rhs)
{
if (! rhs.IsInUse(lhs.begin() ) ) {
unsigned int l = 0;
for(unsigned int i=0; i<D1; ++i)
for(unsigned int j=0; j<D2; ++j) {
lhs.fRep[l] = rhs(i,j);
l++;
}
}
// lhs is in use in expression, need to create a temporary with the result
else {
// std::cout << "create temp for " << typeid(rhs).name() << std::endl;
T tmp[D1*D2];
unsigned int l = 0;
for(unsigned int i=0; i<D1; ++i)
for(unsigned int j=0; j<D2; ++j) {
tmp[l] = rhs(i,j);
l++;
}
// copy now the temp object
for(unsigned int i=0; i<D1*D2; ++i) lhs.fRep[i] = tmp[i];
}
}
};
/**
Structure to assign from an expression based to symmetric matrix to symmetric matrix
*/
template <class T,
unsigned int D1, unsigned int D2,
class A>
struct Assign<T, D1, D2, A, MatRepSym<T,D1>, MatRepSym<T,D1> >
{
/**
Evaluate the expression from symmetric to symmetric matrices.
If the matrix to assign the value is in use in the expression,
a temporary object is created to store the value (case A = B * A)
*/
static void Evaluate(SMatrix<T,D1,D2,MatRepSym<T,D1> >& lhs,
const Expr<A,T,D1,D2,MatRepSym<T,D1> >& rhs)
{
if (! rhs.IsInUse(lhs.begin() ) ) {
unsigned int l = 0;
for(unsigned int i=0; i<D1; ++i)
// storage of symmetric matrix is in lower block
for(unsigned int j=0; j<=i; ++j) {
lhs.fRep.Array()[l] = rhs(i,j);
l++;
}
}
// create a temporary object to store result
else {
T tmp[MatRepSym<T,D1>::kSize];
unsigned int l = 0;
for(unsigned int i=0; i<D1; ++i)
for(unsigned int j=0; j<=i; ++j) {
tmp[l] = rhs(i,j);
l++;
}
// copy now the temp object
for(unsigned int i=0; i<MatRepSym<T,D1>::kSize; ++i) lhs.fRep.Array()[i] = tmp[i];
}
}
};
/**
Dummy Structure which flags an error to avoid assigment from expression based on a
general matrix to a symmetric matrix
*/
template <class T, unsigned int D1, unsigned int D2, class A>
struct Assign<T, D1, D2, A, MatRepSym<T,D1>, MatRepStd<T,D1,D2> >
{
static void Evaluate(SMatrix<T,D1,D2,MatRepSym<T,D1> >&,
const Expr<A,T,D1,D2,MatRepStd<T,D1,D2> >&)
{
STATIC_CHECK(0==1, Cannot_assign_general_to_symmetric_matrix);
}
}; // struct Assign
/**
Force Expression evaluation from general to symmetric.
To be used when is known (like in similarity products) that the result
is symmetric
Note this is function used in the simmilarity product: no check for temporary is
done since in that case is not needed
*/
struct AssignSym
{
/// assign a symmetric matrix from an expression
template <class T,
unsigned int D,
class A,
class R>
static void Evaluate(SMatrix<T,D,D,MatRepSym<T,D> >& lhs, const Expr<A,T,D,D,R>& rhs)
{
//for(unsigned int i=0; i<D1*D2; ++i) lhs.fRep[i] = rhs.apply(i);
unsigned int l = 0;
for(unsigned int i=0; i<D; ++i)
// storage of symmetric matrix is in lower block
for(unsigned int j=0; j<=i; ++j) {
lhs.fRep.Array()[l] = rhs(i,j);
l++;
}
}
/// assign the symmetric matric from a general matrix
template <class T,
unsigned int D,
class R>
static void Evaluate(SMatrix<T,D,D,MatRepSym<T,D> >& lhs, const SMatrix<T,D,D,R>& rhs)
{
//for(unsigned int i=0; i<D1*D2; ++i) lhs.fRep[i] = rhs.apply(i);
unsigned int l = 0;
for(unsigned int i=0; i<D; ++i)
// storage of symmetric matrix is in lower block
for(unsigned int j=0; j<=i; ++j) {
lhs.fRep.Array()[l] = rhs(i,j);
l++;
}
}
}; // struct AssignSym
//=========================================================================
/**
Evaluate the expression performing a += operation
Need to check whether creating a temporary object with the expression result
(like in op: A += A * B )
*/
template <class T, unsigned int D1, unsigned int D2, class A,
class R1, class R2>
struct PlusEquals
{
static void Evaluate(SMatrix<T,D1,D2,R1>& lhs, const Expr<A,T,D1,D2,R2>& rhs)
{
if (! rhs.IsInUse(lhs.begin() ) ) {
unsigned int l = 0;
for(unsigned int i=0; i<D1; ++i)
for(unsigned int j=0; j<D2; ++j) {
lhs.fRep[l] += rhs(i,j);
l++;
}
}
else {
T tmp[D1*D2];
unsigned int l = 0;
for(unsigned int i=0; i<D1; ++i)
for(unsigned int j=0; j<D2; ++j) {
tmp[l] = rhs(i,j);
l++;
}
// += now using the temp object
for(unsigned int i=0; i<D1*D2; ++i) lhs.fRep[i] += tmp[i];
}
}
};
/**
Specialization for symmetric matrices
Evaluate the expression performing a += operation for symmetric matrices
Need to have a separate functions to avoid to modify two times the off-diagonal
elements (i.e applying two times the expression)
Need to check whether creating a temporary object with the expression result
(like in op: A += A * B )
*/
template <class T,
unsigned int D1, unsigned int D2,
class A>
struct PlusEquals<T, D1, D2, A, MatRepSym<T,D1>, MatRepSym<T,D1> >
{
static void Evaluate(SMatrix<T,D1,D2,MatRepSym<T,D1> >& lhs, const Expr<A,T,D1,D2, MatRepSym<T,D1> >& rhs)
{
if (! rhs.IsInUse(lhs.begin() ) ) {
unsigned int l = 0; // l span storage of sym matrices
for(unsigned int i=0; i<D1; ++i)
for(unsigned int j=0; j<=i; ++j) {
lhs.fRep.Array()[l] += rhs(i,j);
l++;
}
}
else {
T tmp[MatRepSym<T,D1>::kSize];
unsigned int l = 0;
for(unsigned int i=0; i<D1; ++i)
for(unsigned int j=0; j<=i; ++j) {
tmp[l] = rhs(i,j);
l++;
}
// += now using the temp object
for(unsigned int i=0; i<MatRepSym<T,D1>::kSize; ++i) lhs.fRep.Array()[i] += tmp[i];
}
}
};
/**
Specialization for symmetrix += general : NOT Allowed operation
*/
template <class T, unsigned int D1, unsigned int D2, class A>
struct PlusEquals<T, D1, D2, A, MatRepSym<T,D1>, MatRepStd<T,D1,D2> >
{
static void Evaluate(SMatrix<T,D1,D2,MatRepSym<T,D1> >&,
const Expr<A,T,D1,D2,MatRepStd<T,D1,D2> >&)
{
STATIC_CHECK(0==1, Cannot_plusEqual_general_to_symmetric_matrix);
}
}; // struct PlusEquals
//=========================================================================
/**
Evaluate the expression performing a -= operation
Need to check whether creating a temporary object with the expression result
(like in op: A -= A * B )
*/
template <class T, unsigned int D1, unsigned int D2, class A,
class R1, class R2>
struct MinusEquals
{
static void Evaluate(SMatrix<T,D1,D2,R1>& lhs, const Expr<A,T,D1,D2,R2>& rhs)
{
if (! rhs.IsInUse(lhs.begin() ) ) {
unsigned int l = 0;
for(unsigned int i=0; i<D1; ++i)
for(unsigned int j=0; j<D2; ++j) {
lhs.fRep[l] -= rhs(i,j);
l++;
}
}
else {
T tmp[D1*D2];
unsigned int l = 0;
for(unsigned int i=0; i<D1; ++i)
for(unsigned int j=0; j<D2; ++j) {
tmp[l] = rhs(i,j);
l++;
}
// -= now using the temp object
for(unsigned int i=0; i<D1*D2; ++i) lhs.fRep[i] -= tmp[i];
}
}
};
/**
Specialization for symmetric matrices.
Evaluate the expression performing a -= operation for symmetric matrices
Need to have a separate functions to avoid to modify two times the off-diagonal
elements (i.e applying two times the expression)
Need to check whether creating a temporary object with the expression result
(like in op: A -= A + B )
*/
template <class T,
unsigned int D1, unsigned int D2,
class A>
struct MinusEquals<T, D1, D2, A, MatRepSym<T,D1>, MatRepSym<T,D1> >
{
static void Evaluate(SMatrix<T,D1,D2,MatRepSym<T,D1> >& lhs, const Expr<A,T,D1,D2, MatRepSym<T,D1> >& rhs)
{
if (! rhs.IsInUse(lhs.begin() ) ) {
unsigned int l = 0; // l span storage of sym matrices
for(unsigned int i=0; i<D1; ++i)
for(unsigned int j=0; j<=i; ++j) {
lhs.fRep.Array()[l] -= rhs(i,j);
l++;
}
}
else {
T tmp[MatRepSym<T,D1>::kSize];
unsigned int l = 0;
for(unsigned int i=0; i<D1; ++i)
for(unsigned int j=0; j<=i; ++j) {
tmp[l] = rhs(i,j);
l++;
}
// -= now using the temp object
for(unsigned int i=0; i<MatRepSym<T,D1>::kSize; ++i) lhs.fRep.Array()[i] -= tmp[i];
}
}
};
/**
Specialization for symmetrix -= general : NOT Allowed operation
*/
template <class T, unsigned int D1, unsigned int D2, class A>
struct MinusEquals<T, D1, D2, A, MatRepSym<T,D1>, MatRepStd<T,D1,D2> >
{
static void Evaluate(SMatrix<T,D1,D2,MatRepSym<T,D1> >&,
const Expr<A,T,D1,D2,MatRepStd<T,D1,D2> >&)
{
STATIC_CHECK(0==1, Cannot_minusEqual_general_to_symmetric_matrix);
}
}; // struct MinusEquals
/** Structure to deal when a submatrix is placed in a matrix.
We have different cases according to the matrix representation
*/
template <class T, unsigned int D1, unsigned int D2,
unsigned int D3, unsigned int D4,
class R1, class R2>
struct PlaceMatrix
{
static void Evaluate(SMatrix<T,D1,D2,R1>& lhs, const SMatrix<T,D3,D4,R2>& rhs,
unsigned int row, unsigned int col) {
assert(row+D3 <= D1 && col+D4 <= D2);
const unsigned int offset = row*D2+col;
for(unsigned int i=0; i<D3*D4; ++i) {
lhs.fRep[offset+(i/D4)*D2+i%D4] = rhs.apply(i);
}
}
}; // struct PlaceMatrix
template <class T, unsigned int D1, unsigned int D2,
unsigned int D3, unsigned int D4,
class A, class R1, class R2>
struct PlaceExpr {
static void Evaluate(SMatrix<T,D1,D2,R1>& lhs, const Expr<A,T,D3,D4,R2>& rhs,
unsigned int row, unsigned int col) {
assert(row+D3 <= D1 && col+D4 <= D2);
const unsigned int offset = row*D2+col;
for(unsigned int i=0; i<D3*D4; ++i) {
lhs.fRep[offset+(i/D4)*D2+i%D4] = rhs.apply(i);
}
}
}; // struct PlaceExpr
// specialization for general matrix in symmetric matrices
template <class T, unsigned int D1, unsigned int D2,
unsigned int D3, unsigned int D4 >
struct PlaceMatrix<T, D1, D2, D3, D4, MatRepSym<T,D1>, MatRepStd<T,D3,D4> > {
static void Evaluate(SMatrix<T,D1,D2,MatRepSym<T,D1> >& ,
const SMatrix<T,D3,D4,MatRepStd<T,D3,D4> >& ,
unsigned int , unsigned int )
{
STATIC_CHECK(0==1, Cannot_Place_Matrix_general_in_symmetric_matrix);
}
}; // struct PlaceMatrix
// specialization for general expression in symmetric matrices
template <class T, unsigned int D1, unsigned int D2,
unsigned int D3, unsigned int D4, class A >
struct PlaceExpr<T, D1, D2, D3, D4, A, MatRepSym<T,D1>, MatRepStd<T,D3,D4> > {
static void Evaluate(SMatrix<T,D1,D2,MatRepSym<T,D1> >& ,
const Expr<A,T,D3,D4,MatRepStd<T,D3,D4> >& ,
unsigned int , unsigned int )
{
STATIC_CHECK(0==1, Cannot_Place_Matrix_general_in_symmetric_matrix);
}
}; // struct PlaceExpr
// specialization for symmetric matrix in symmetric matrices
template <class T, unsigned int D1, unsigned int D2,
unsigned int D3, unsigned int D4 >
struct PlaceMatrix<T, D1, D2, D3, D4, MatRepSym<T,D1>, MatRepSym<T,D3> > {
static void Evaluate(SMatrix<T,D1,D2,MatRepSym<T,D1> >& lhs,
const SMatrix<T,D3,D4,MatRepSym<T,D3> >& rhs,
unsigned int row, unsigned int col )
{
// can work only if placed on the diagonal
assert(row == col);
for(unsigned int i=0; i<D3; ++i) {
for(unsigned int j=0; j<=i; ++j)
lhs.fRep(row+i,col+j) = rhs(i,j);
}
}
}; // struct PlaceMatrix
// specialization for symmetric expression in symmetric matrices
template <class T, unsigned int D1, unsigned int D2,
unsigned int D3, unsigned int D4, class A >
struct PlaceExpr<T, D1, D2, D3, D4, A, MatRepSym<T,D1>, MatRepSym<T,D3> > {
static void Evaluate(SMatrix<T,D1,D2,MatRepSym<T,D1> >& lhs,
const Expr<A,T,D3,D4,MatRepSym<T,D3> >& rhs,
unsigned int row, unsigned int col )
{
// can work only if placed on the diagonal
assert(row == col);
for(unsigned int i=0; i<D3; ++i) {
for(unsigned int j=0; j<=i; ++j)
lhs.fRep(row+i,col+j) = rhs(i,j);
}
}
}; // struct PlaceExpr
/** Structure for getting sub matrices
We have different cases according to the matrix representations
*/
template <class T, unsigned int D1, unsigned int D2,
unsigned int D3, unsigned int D4,
class R1, class R2>
struct RetrieveMatrix
{
static void Evaluate(SMatrix<T,D1,D2,R1>& lhs, const SMatrix<T,D3,D4,R2>& rhs,
unsigned int row, unsigned int col) {
STATIC_CHECK( D1 <= D3,Smatrix_nrows_too_small);
STATIC_CHECK( D2 <= D4,Smatrix_ncols_too_small);
assert(row + D1 <= D3);
assert(col + D2 <= D4);
for(unsigned int i=0; i<D1; ++i) {
for(unsigned int j=0; j<D2; ++j)
lhs(i,j) = rhs(i+row,j+col);
}
}
}; // struct RetrieveMatrix
// specialization for getting symmetric matrices from general matrices (MUST fail)
template <class T, unsigned int D1, unsigned int D2,
unsigned int D3, unsigned int D4 >
struct RetrieveMatrix<T, D1, D2, D3, D4, MatRepSym<T,D1>, MatRepStd<T,D3,D4> > {
static void Evaluate(SMatrix<T,D1,D2,MatRepSym<T,D1> >& ,
const SMatrix<T,D3,D4,MatRepStd<T,D3,D4> >& ,
unsigned int , unsigned int )
{
STATIC_CHECK(0==1, Cannot_Sub_Matrix_symmetric_in_general_matrix);
}
}; // struct RetrieveMatrix
// specialization for getting symmetric matrices from symmetric matrices (OK if row == col)
template <class T, unsigned int D1, unsigned int D2,
unsigned int D3, unsigned int D4 >
struct RetrieveMatrix<T, D1, D2, D3, D4, MatRepSym<T,D1>, MatRepSym<T,D3> > {
static void Evaluate(SMatrix<T,D1,D2,MatRepSym<T,D1> >& lhs,
const SMatrix<T,D3,D4,MatRepSym<T,D3> >& rhs,
unsigned int row, unsigned int col )
{
STATIC_CHECK( D1 <= D3,Smatrix_dimension1_too_small);
// can work only if placed on the diagonal
assert(row == col);
assert(row + D1 <= D3);
for(unsigned int i=0; i<D1; ++i) {
for(unsigned int j=0; j<=i; ++j)
lhs(i,j) = rhs(i+row,j+col );
}
}
}; // struct RetrieveMatrix
/**
Structure for assignment to a general matrix from iterator.
Optionally a check is done that iterator size
is not larger than matrix size
*/
template <class T, unsigned int D1, unsigned int D2, class R>
struct AssignItr {
template<class Iterator>
static void Evaluate(SMatrix<T,D1,D2,R>& lhs, Iterator begin, Iterator end,
bool triang, bool lower,bool check=true) {
// require size match exactly (better)
if (triang) {
Iterator itr = begin;
if (lower) {
for (unsigned int i = 0; i < D1; ++i)
for (unsigned int j =0; j <= i; ++j) {
// we assume iterator is well bounded within matrix
lhs.fRep[i*D2+j] = *itr++;
}
}
else { // upper
for (unsigned int i = 0; i < D1; ++i)
for (unsigned int j = i; j <D2; ++j) {
if (itr != end)
lhs.fRep[i*D2+j] = *itr++;
else
return;
}
}
}
// case of filling the full matrix
else {
if (check) assert( begin + R::kSize == end);
// copy directly the elements
std::copy(begin, end, lhs.fRep.Array() );
}
}
}; // struct AssignItr
/**
Specialized structure for assignment to a symmetrix matrix from iterator.
Optionally a check is done that iterator size
is the same as the matrix size
*/
template <class T, unsigned int D1, unsigned int D2>
struct AssignItr<T, D1, D2, MatRepSym<T,D1> > {
template<class Iterator>
static void Evaluate(SMatrix<T,D1,D2,MatRepSym<T,D1> >& lhs, Iterator begin, Iterator end, bool , bool lower, bool check = true) {
if (lower) {
if (check) {
assert(begin+ static_cast< int>( MatRepSym<T,D1>::kSize) == end);
}
std::copy(begin, end, lhs.fRep.Array() );
}
else {
Iterator itr = begin;
for (unsigned int i = 0; i < D1; ++i)
for (unsigned int j = i; j <D2; ++j) {
if (itr != end)
lhs(i,j) = *itr++;
else
return;
}
}
}
}; // struct AssignItr
} // namespace Math
} // namespace ROOT
#endif // MATH_HELPEROPS_H
|