This file is indexed.

/usr/include/root/Math/HelperOps.h is in libroot-math-smatrix-dev 5.34.30-0ubuntu8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
// @(#)root/smatrix:$Id$
// Authors: J. Palacios    2006  

#ifndef ROOT_Math_HelperOps
#define ROOT_Math_HelperOps 1

// Include files

/** @class HelperOps HelperOps.h Math/HelperOps.h
 *  
 *
 *  @author Juan PALACIOS
 *  @date   2006-01-11
 *
 *  Specialised helper classes for binary operators =, +=, -=
 *  between SMatrices and Expressions with arbitrary representations.
 *  Specialisations at the moment only for Symmetric LHS and Generic RHS
 *  and used to throw static assert.
 */
#include "Math/StaticCheck.h"
#include <algorithm>  // required by std::copy

namespace ROOT { 

namespace Math {

   template <class T, unsigned int D1, unsigned int D2, class R>
   class SMatrix;

   template <class A, class T, unsigned int D1, unsigned int D2, class R>
   class Expr;

   //=========================================================================
   /** 
       Structure to assign from an expression based to general matrix to general matrix
   */
   template <class T, 
             unsigned int D1, unsigned int D2, 
             class A, class R1, class R2>

   struct Assign
   {
      /** 
          Evaluate the expression from general to general matrices.
          If the matrix to assign the value is in use in the expression, 
          a temporary object is created to store the value (case A = B * A)
      */
      static void Evaluate(SMatrix<T,D1,D2,R1>& lhs,  const Expr<A,T,D1,D2,R2>& rhs) 
      {
         if (! rhs.IsInUse(lhs.begin() )  ) { 
            unsigned int l = 0; 
            for(unsigned int i=0; i<D1; ++i) 
               for(unsigned int j=0; j<D2; ++j) { 
                  lhs.fRep[l] = rhs(i,j);
                  l++;
               }
         }
         // lhs is in use in expression, need to create a temporary with the result
         else { 
            // std::cout << "create temp  for " << typeid(rhs).name() << std::endl;
            T tmp[D1*D2]; 
            unsigned int l = 0; 
            for(unsigned int i=0; i<D1; ++i) 
               for(unsigned int j=0; j<D2; ++j) { 
                  tmp[l] = rhs(i,j);
                  l++;
               }
            // copy now the temp object 
            for(unsigned int i=0; i<D1*D2; ++i) lhs.fRep[i] = tmp[i];
         }

      }

   };

   /** 
       Structure to assign from an expression based to symmetric matrix to symmetric matrix
   */
   template <class T, 
             unsigned int D1, unsigned int D2, 
             class A>

   struct Assign<T, D1, D2, A, MatRepSym<T,D1>, MatRepSym<T,D1> > 
   {
      /** 
          Evaluate the expression from  symmetric to symmetric matrices.
          If the matrix to assign the value is in use in the expression, 
          a temporary object is created to store the value (case A = B * A)
      */
      static void Evaluate(SMatrix<T,D1,D2,MatRepSym<T,D1> >& lhs,  
                           const Expr<A,T,D1,D2,MatRepSym<T,D1> >& rhs) 
      {
         if (! rhs.IsInUse(lhs.begin() ) ) { 
            unsigned int l = 0; 
            for(unsigned int i=0; i<D1; ++i)
               // storage of symmetric matrix is in lower block
               for(unsigned int j=0; j<=i; ++j) { 
                  lhs.fRep.Array()[l] = rhs(i,j);
                  l++;
               }
         }
         // create a temporary object to store result
         else { 
            T tmp[MatRepSym<T,D1>::kSize]; 
            unsigned int l = 0; 
            for(unsigned int i=0; i<D1; ++i) 
               for(unsigned int j=0; j<=i; ++j) { 
                  tmp[l] = rhs(i,j);
                  l++;
               }
            // copy now the temp object 
            for(unsigned int i=0; i<MatRepSym<T,D1>::kSize; ++i) lhs.fRep.Array()[i] = tmp[i];
         }
      }
   };

    

   /** 
       Dummy Structure which flags an error to avoid assigment from expression based on a 
       general matrix to a symmetric matrix
   */
   template <class T, unsigned int D1, unsigned int D2, class A>
   struct Assign<T, D1, D2, A, MatRepSym<T,D1>, MatRepStd<T,D1,D2> > 
   {
      static void Evaluate(SMatrix<T,D1,D2,MatRepSym<T,D1> >&,  
                           const Expr<A,T,D1,D2,MatRepStd<T,D1,D2> >&) 
      {
         STATIC_CHECK(0==1, Cannot_assign_general_to_symmetric_matrix);
      }
      
   }; // struct Assign


   /** 
       Force Expression evaluation from general to symmetric. 
       To be used when is known (like in similarity products) that the result 
       is symmetric
       Note this is function used in the simmilarity product: no check for temporary is 
       done since in that case is not needed
   */
   struct AssignSym
   {
      /// assign a symmetric matrix from an expression
      template <class T, 
                unsigned int D,
                class A, 
                class R>
      static void Evaluate(SMatrix<T,D,D,MatRepSym<T,D> >& lhs,  const Expr<A,T,D,D,R>& rhs) 
      {
         //for(unsigned int i=0; i<D1*D2; ++i) lhs.fRep[i] = rhs.apply(i);
         unsigned int l = 0; 
         for(unsigned int i=0; i<D; ++i)
            // storage of symmetric matrix is in lower block
            for(unsigned int j=0; j<=i; ++j) { 
               lhs.fRep.Array()[l] = rhs(i,j);
               l++;
            }
      }
      /// assign the symmetric matric  from a general matrix  
      template <class T, 
                unsigned int D,
                class R>
      static void Evaluate(SMatrix<T,D,D,MatRepSym<T,D> >& lhs,  const SMatrix<T,D,D,R>& rhs) 
      {
         //for(unsigned int i=0; i<D1*D2; ++i) lhs.fRep[i] = rhs.apply(i);
         unsigned int l = 0; 
         for(unsigned int i=0; i<D; ++i)
            // storage of symmetric matrix is in lower block
            for(unsigned int j=0; j<=i; ++j) { 
               lhs.fRep.Array()[l] = rhs(i,j);
               l++;
            }
      }


   }; // struct AssignSym 
    

   //=========================================================================
   /** 
       Evaluate the expression performing a += operation
       Need to check whether creating a temporary object with the expression result
       (like in op:  A += A * B )
   */
   template <class T, unsigned int D1, unsigned int D2, class A,
             class R1, class R2>
   struct PlusEquals
   {
      static void Evaluate(SMatrix<T,D1,D2,R1>& lhs,  const Expr<A,T,D1,D2,R2>& rhs) 
      {
         if (! rhs.IsInUse(lhs.begin() )  ) { 
            unsigned int l = 0; 
            for(unsigned int i=0; i<D1; ++i) 
               for(unsigned int j=0; j<D2; ++j) { 
                  lhs.fRep[l] += rhs(i,j);
                  l++;
               }
         }
         else { 
            T tmp[D1*D2]; 
            unsigned int l = 0; 
            for(unsigned int i=0; i<D1; ++i) 
               for(unsigned int j=0; j<D2; ++j) { 
                  tmp[l] = rhs(i,j);
                  l++;
               }
            // += now using the temp object 
            for(unsigned int i=0; i<D1*D2; ++i) lhs.fRep[i] += tmp[i];
         }
      }
   };

   /** 
       Specialization for symmetric matrices
       Evaluate the expression performing a += operation for symmetric matrices
       Need to have a separate functions to avoid to modify two times the off-diagonal 
       elements (i.e applying two times the expression)
       Need to check whether creating a temporary object with the expression result
       (like in op:  A += A * B )
   */
   template <class T, 
             unsigned int D1, unsigned int D2, 
             class A>
   struct PlusEquals<T, D1, D2, A, MatRepSym<T,D1>, MatRepSym<T,D1> > 
   {
      static void Evaluate(SMatrix<T,D1,D2,MatRepSym<T,D1> >& lhs,  const Expr<A,T,D1,D2, MatRepSym<T,D1> >& rhs) 
      {
         if (! rhs.IsInUse(lhs.begin() )  ) { 
            unsigned int l = 0;  // l span storage of sym matrices
            for(unsigned int i=0; i<D1; ++i) 
               for(unsigned int j=0; j<=i; ++j) { 
                  lhs.fRep.Array()[l] += rhs(i,j);
                  l++;
               }
         }
         else { 
            T tmp[MatRepSym<T,D1>::kSize]; 
            unsigned int l = 0; 
            for(unsigned int i=0; i<D1; ++i) 
               for(unsigned int j=0; j<=i; ++j) { 
                  tmp[l] = rhs(i,j);
                  l++;
               }
            // += now using the temp object 
            for(unsigned int i=0; i<MatRepSym<T,D1>::kSize; ++i) lhs.fRep.Array()[i] += tmp[i];
         }
      }
   };
   /**
      Specialization for symmetrix += general : NOT Allowed operation 
    */    
   template <class T, unsigned int D1, unsigned int D2, class A>
   struct PlusEquals<T, D1, D2, A, MatRepSym<T,D1>, MatRepStd<T,D1,D2> > 
   {
      static void Evaluate(SMatrix<T,D1,D2,MatRepSym<T,D1> >&,  
                           const Expr<A,T,D1,D2,MatRepStd<T,D1,D2> >&) 
      {        
         STATIC_CHECK(0==1, Cannot_plusEqual_general_to_symmetric_matrix);
      }
   }; // struct PlusEquals

   //=========================================================================

   /** 
       Evaluate the expression performing a -= operation
       Need to check whether creating a temporary object with the expression result
       (like in op:  A -= A * B )
   */
   template <class T, unsigned int D1, unsigned int D2, class A,
             class R1, class R2>
   struct MinusEquals
   {
      static void Evaluate(SMatrix<T,D1,D2,R1>& lhs,  const Expr<A,T,D1,D2,R2>& rhs) 
      {
         if (! rhs.IsInUse(lhs.begin() )  ) { 
            unsigned int l = 0; 
            for(unsigned int i=0; i<D1; ++i) 
               for(unsigned int j=0; j<D2; ++j) { 
                  lhs.fRep[l] -= rhs(i,j);
                  l++;
               }
         }
         else { 
            T tmp[D1*D2]; 
            unsigned int l = 0; 
            for(unsigned int i=0; i<D1; ++i) 
               for(unsigned int j=0; j<D2; ++j) { 
                  tmp[l] = rhs(i,j);
                  l++;
               }
            // -= now using the temp object 
            for(unsigned int i=0; i<D1*D2; ++i) lhs.fRep[i] -= tmp[i];
         }
      }
   };
   /** 
       Specialization for symmetric matrices.
       Evaluate the expression performing a -= operation for symmetric matrices
       Need to have a separate functions to avoid to modify two times the off-diagonal 
       elements (i.e applying two times the expression)
       Need to check whether creating a temporary object with the expression result
       (like in op:  A -= A + B )
   */
   template <class T, 
             unsigned int D1, unsigned int D2, 
             class A>
   struct MinusEquals<T, D1, D2, A, MatRepSym<T,D1>, MatRepSym<T,D1> > 
   {
      static void Evaluate(SMatrix<T,D1,D2,MatRepSym<T,D1> >& lhs,  const Expr<A,T,D1,D2, MatRepSym<T,D1> >& rhs) 
      {
         if (! rhs.IsInUse(lhs.begin() )  ) { 
            unsigned int l = 0;  // l span storage of sym matrices
            for(unsigned int i=0; i<D1; ++i) 
               for(unsigned int j=0; j<=i; ++j) { 
                  lhs.fRep.Array()[l] -= rhs(i,j);
                  l++;
               }
         }
         else { 
            T tmp[MatRepSym<T,D1>::kSize]; 
            unsigned int l = 0; 
            for(unsigned int i=0; i<D1; ++i) 
               for(unsigned int j=0; j<=i; ++j) { 
                  tmp[l] = rhs(i,j);
                  l++;
               }
            // -= now using the temp object 
            for(unsigned int i=0; i<MatRepSym<T,D1>::kSize; ++i) lhs.fRep.Array()[i] -= tmp[i];
         }
      }
   };

   /**
      Specialization for symmetrix -= general : NOT Allowed operation 
    */
   template <class T, unsigned int D1, unsigned int D2, class A>
   struct MinusEquals<T, D1, D2, A, MatRepSym<T,D1>, MatRepStd<T,D1,D2> > 
   {
      static void Evaluate(SMatrix<T,D1,D2,MatRepSym<T,D1> >&,  
                           const Expr<A,T,D1,D2,MatRepStd<T,D1,D2> >&) 
      {        
         STATIC_CHECK(0==1, Cannot_minusEqual_general_to_symmetric_matrix);
      }
   }; // struct MinusEquals


   /** Structure to deal when a submatrix is placed in a matrix.  
       We have different cases according to the matrix representation
   */
   template <class T, unsigned int D1, unsigned int D2,   
             unsigned int D3, unsigned int D4, 
             class R1, class R2>
   struct PlaceMatrix
   {
      static void Evaluate(SMatrix<T,D1,D2,R1>& lhs,  const SMatrix<T,D3,D4,R2>& rhs, 
                           unsigned int row, unsigned int col) {

         assert(row+D3 <= D1 && col+D4 <= D2);
         const unsigned int offset = row*D2+col;

         for(unsigned int i=0; i<D3*D4; ++i) {
            lhs.fRep[offset+(i/D4)*D2+i%D4] = rhs.apply(i);
         }

      }
   }; // struct PlaceMatrix

   template <class T, unsigned int D1, unsigned int D2,   
             unsigned int D3, unsigned int D4, 
             class A, class R1, class R2>
   struct PlaceExpr { 
      static void Evaluate(SMatrix<T,D1,D2,R1>& lhs,  const Expr<A,T,D3,D4,R2>& rhs, 
                           unsigned int row, unsigned int col) { 

         assert(row+D3 <= D1 && col+D4 <= D2);
         const unsigned int offset = row*D2+col;

         for(unsigned int i=0; i<D3*D4; ++i) {
            lhs.fRep[offset+(i/D4)*D2+i%D4] = rhs.apply(i);
         }
      }
   };  // struct PlaceExpr 

   // specialization for general matrix in symmetric matrices
   template <class T, unsigned int D1, unsigned int D2, 
             unsigned int D3, unsigned int D4 >
   struct PlaceMatrix<T, D1, D2, D3, D4, MatRepSym<T,D1>, MatRepStd<T,D3,D4> > { 
      static void Evaluate(SMatrix<T,D1,D2,MatRepSym<T,D1> >& ,  
                           const SMatrix<T,D3,D4,MatRepStd<T,D3,D4> >& , 
                           unsigned int , unsigned int ) 
      {        
         STATIC_CHECK(0==1, Cannot_Place_Matrix_general_in_symmetric_matrix);
      }
   }; // struct PlaceMatrix

   // specialization for general expression in symmetric matrices
   template <class T, unsigned int D1, unsigned int D2, 
             unsigned int D3, unsigned int D4, class A >
   struct PlaceExpr<T, D1, D2, D3, D4, A, MatRepSym<T,D1>, MatRepStd<T,D3,D4> > { 
      static void Evaluate(SMatrix<T,D1,D2,MatRepSym<T,D1> >& ,  
                           const Expr<A,T,D3,D4,MatRepStd<T,D3,D4> >& , 
                           unsigned int , unsigned int ) 
      {        
         STATIC_CHECK(0==1, Cannot_Place_Matrix_general_in_symmetric_matrix);
      }
   }; // struct PlaceExpr

   // specialization for symmetric matrix in symmetric matrices

   template <class T, unsigned int D1, unsigned int D2, 
             unsigned int D3, unsigned int D4 >
   struct PlaceMatrix<T, D1, D2, D3, D4, MatRepSym<T,D1>, MatRepSym<T,D3> > { 
      static void Evaluate(SMatrix<T,D1,D2,MatRepSym<T,D1> >& lhs,  
                           const SMatrix<T,D3,D4,MatRepSym<T,D3> >& rhs, 
                           unsigned int row, unsigned int col ) 
      {        
         // can work only if placed on the diagonal
         assert(row == col); 

         for(unsigned int i=0; i<D3; ++i) {
            for(unsigned int j=0; j<=i; ++j) 
               lhs.fRep(row+i,col+j) = rhs(i,j);
         }
      }
   }; // struct PlaceMatrix

   // specialization for symmetric expression in symmetric matrices
   template <class T, unsigned int D1, unsigned int D2, 
             unsigned int D3, unsigned int D4, class A >
   struct PlaceExpr<T, D1, D2, D3, D4, A, MatRepSym<T,D1>, MatRepSym<T,D3> > { 
      static void Evaluate(SMatrix<T,D1,D2,MatRepSym<T,D1> >& lhs,  
                           const Expr<A,T,D3,D4,MatRepSym<T,D3> >& rhs, 
                           unsigned int row, unsigned int col ) 
      {        
         // can work only if placed on the diagonal
         assert(row == col); 

         for(unsigned int i=0; i<D3; ++i) {
            for(unsigned int j=0; j<=i; ++j) 
               lhs.fRep(row+i,col+j) = rhs(i,j);
         }
      }
   }; // struct PlaceExpr



   /** Structure for getting sub matrices 
       We have different cases according to the matrix representations
   */
   template <class T, unsigned int D1, unsigned int D2,   
             unsigned int D3, unsigned int D4, 
             class R1, class R2>
   struct RetrieveMatrix
   {
      static void Evaluate(SMatrix<T,D1,D2,R1>& lhs,  const SMatrix<T,D3,D4,R2>& rhs, 
                           unsigned int row, unsigned int col) {
         STATIC_CHECK( D1 <= D3,Smatrix_nrows_too_small); 
         STATIC_CHECK( D2 <= D4,Smatrix_ncols_too_small); 

         assert(row + D1 <= D3);
         assert(col + D2 <= D4);

         for(unsigned int i=0; i<D1; ++i) { 
            for(unsigned int j=0; j<D2; ++j) 
               lhs(i,j) = rhs(i+row,j+col);
         }
      }
   };   // struct RetrieveMatrix

   // specialization for getting symmetric matrices from  general matrices (MUST fail)
   template <class T, unsigned int D1, unsigned int D2, 
             unsigned int D3, unsigned int D4 >
   struct RetrieveMatrix<T, D1, D2, D3, D4, MatRepSym<T,D1>, MatRepStd<T,D3,D4> > { 
      static void Evaluate(SMatrix<T,D1,D2,MatRepSym<T,D1> >& ,  
                           const SMatrix<T,D3,D4,MatRepStd<T,D3,D4> >& , 
                           unsigned int , unsigned int ) 
      {        
         STATIC_CHECK(0==1, Cannot_Sub_Matrix_symmetric_in_general_matrix);
      }
   }; // struct RetrieveMatrix

   // specialization for getting symmetric matrices from  symmetric matrices (OK if row == col)
   template <class T, unsigned int D1, unsigned int D2, 
             unsigned int D3, unsigned int D4 >
   struct RetrieveMatrix<T, D1, D2, D3, D4, MatRepSym<T,D1>, MatRepSym<T,D3> > { 
      static void Evaluate(SMatrix<T,D1,D2,MatRepSym<T,D1> >& lhs,  
                           const SMatrix<T,D3,D4,MatRepSym<T,D3> >& rhs, 
                           unsigned int row, unsigned int col ) 
      {        
         STATIC_CHECK(  D1 <= D3,Smatrix_dimension1_too_small); 
         // can work only if placed on the diagonal
         assert(row == col); 
         assert(row + D1 <= D3);

         for(unsigned int i=0; i<D1; ++i) {
            for(unsigned int j=0; j<=i; ++j) 
               lhs(i,j) = rhs(i+row,j+col );
         }
      }

   }; // struct RetrieveMatrix
    
   /**
      Structure for assignment to a general matrix from iterator. 
      Optionally a check is done that iterator size 
      is not larger than matrix size  
    */
   template <class T, unsigned int D1, unsigned int D2, class R>  
   struct AssignItr { 
      template<class Iterator> 
      static void Evaluate(SMatrix<T,D1,D2,R>& lhs, Iterator begin, Iterator end, 
                           bool triang, bool lower,bool check=true) { 
         // require size match exactly (better)

         if (triang) { 
            Iterator itr = begin; 
            if (lower) { 
               for (unsigned int i = 0; i < D1; ++i) 
                  for (unsigned int j =0; j <= i; ++j) { 
                     // we assume iterator is well bounded within matrix
                     lhs.fRep[i*D2+j] = *itr++;
                  }

            }
            else { // upper 
               for (unsigned int i = 0; i < D1; ++i) 
                  for (unsigned int j = i; j <D2; ++j) { 
                     if (itr != end)  
                        lhs.fRep[i*D2+j] = *itr++;
                     else
                        return;
                  }

            }
         }
         // case of filling the full matrix
         else { 
            if (check) assert( begin + R::kSize == end);
            // copy directly the elements 
            std::copy(begin, end, lhs.fRep.Array() );
         }
      }

   }; // struct AssignItr

   /**
      Specialized structure for assignment to a symmetrix matrix from iterator. 
      Optionally a check is done that iterator size 
      is the same as the matrix size  
    */
   template <class T, unsigned int D1, unsigned int D2>  
   struct AssignItr<T, D1, D2, MatRepSym<T,D1> >  { 
      template<class Iterator> 
      static void Evaluate(SMatrix<T,D1,D2,MatRepSym<T,D1> >& lhs, Iterator begin, Iterator end, bool , bool lower, bool check = true) { 

         if (lower) { 
            if (check) {
               assert(begin+ static_cast< int>( MatRepSym<T,D1>::kSize) == end);
            }
            std::copy(begin, end, lhs.fRep.Array() );
         }
         else { 
            Iterator itr = begin; 
            for (unsigned int i = 0; i < D1; ++i) 
               for (unsigned int j = i; j <D2; ++j) { 
                  if (itr != end) 
                     lhs(i,j) = *itr++;
                  else 
                     return; 
               }
         }
      }

   }; // struct AssignItr
    

}  // namespace Math
  
}  // namespace ROOT

#endif // MATH_HELPEROPS_H