This file is indexed.

/usr/include/root/TQpVar.h is in libroot-math-quadp-dev 5.34.30-0ubuntu8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
// @(#)root/quadp:$Id$
// Author: Eddy Offermann   May 2004

/*************************************************************************
 * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers.               *
 * All rights reserved.                                                  *
 *                                                                       *
 * For the licensing terms see $ROOTSYS/LICENSE.                         *
 * For the list of contributors see $ROOTSYS/README/CREDITS.             *
 *************************************************************************/

/*************************************************************************
 * Parts of this file are copied from the OOQP distribution and          *
 * are subject to the following license:                                 *
 *                                                                       *
 * COPYRIGHT 2001 UNIVERSITY OF CHICAGO                                  *
 *                                                                       *
 * The copyright holder hereby grants you royalty-free rights to use,    *
 * reproduce, prepare derivative works, and to redistribute this software*
 * to others, provided that any changes are clearly documented. This     *
 * software was authored by:                                             *
 *                                                                       *
 *   E. MICHAEL GERTZ      gertz@mcs.anl.gov                             *
 *   Mathematics and Computer Science Division                           *
 *   Argonne National Laboratory                                         *
 *   9700 S. Cass Avenue                                                 *
 *   Argonne, IL 60439-4844                                              *
 *                                                                       *
 *   STEPHEN J. WRIGHT     swright@cs.wisc.edu                           *
 *   Computer Sciences Department                                        *
 *   University of Wisconsin                                             *
 *   1210 West Dayton Street                                             *
 *   Madison, WI 53706   FAX: (608)262-9777                              *
 *                                                                       *
 * Any questions or comments may be directed to one of the authors.      *
 *                                                                       *
 * ARGONNE NATIONAL LABORATORY (ANL), WITH FACILITIES IN THE STATES OF   *
 * ILLINOIS AND IDAHO, IS OWNED BY THE UNITED STATES GOVERNMENT, AND     *
 * OPERATED BY THE UNIVERSITY OF CHICAGO UNDER PROVISION OF A CONTRACT   *
 * WITH THE DEPARTMENT OF ENERGY.                                        *
 *************************************************************************/

#ifndef ROOT_TQpVar
#define ROOT_TQpVar

#ifndef ROOT_TError
#include "TError.h"
#endif

#ifndef ROOT_TMatrixD
#include "TMatrixD.h"
#endif
#ifndef ROOT_TVectorD
#include "TVectorD.h"
#endif

///////////////////////////////////////////////////////////////////////////
//                                                                       //
// Class containing the variables for the general QP formulation         //
// In terms of in our abstract problem formulation, these variables are  //
// the vectors x, y, z and s.                                            //
//                                                                       //
///////////////////////////////////////////////////////////////////////////

class TQpVar : public TObject
{

protected:
   Int_t fNx;
   Int_t fMy;
   Int_t fMz;
   Int_t fNxup;
   Int_t fNxlo;
   Int_t fMcup;
   Int_t fMclo;

   // these variables will be "Used" not copied
   TVectorD fXloIndex;
   TVectorD fXupIndex;
   TVectorD fCupIndex;
   TVectorD fCloIndex;

   static Double_t StepBound      (TVectorD &v,TVectorD &dir,Double_t maxStep);
   static Double_t FindBlocking   (TVectorD &w,TVectorD &wstep,TVectorD &u,TVectorD &ustep,
                                   Double_t maxStep,Double_t &w_elt,Double_t &wstep_elt,Double_t &u_elt,
                                   Double_t &ustep_elt,int& first_or_second);
   static Double_t FindBlockingSub(Int_t n,Double_t *w,Int_t incw,Double_t *wstep,Int_t incwstep,
                                   Double_t *u,Int_t incu,Double_t *ustep,Int_t incustep,
                                   Double_t maxStep,Double_t &w_elt,Double_t &wstep_elt,
                                   Double_t &u_elt,Double_t &ustep_elt,Int_t &first_or_second);

public:

   Int_t fNComplementaryVariables;             // number of complementary primal-dual variables.

   // these variables will be "Used" not copied
   TVectorD fX;
   TVectorD fS;
   TVectorD fY;
   TVectorD fZ;

   TVectorD fV;
   TVectorD fPhi;

   TVectorD fW;
   TVectorD fGamma;

   TVectorD fT;
   TVectorD fLambda;

   TVectorD fU;
   TVectorD fPi;

   TQpVar();
   // constructor in which the data and variable pointers are set to point to the given arguments
   TQpVar(TVectorD &x_in,TVectorD &s_in,TVectorD &y_in,TVectorD &z_in,
          TVectorD &v_in,TVectorD &gamma_in,TVectorD &w_in,TVectorD &phi_in,
          TVectorD &t_in,TVectorD &lambda_in,TVectorD &u_in,TVectorD &pi_in,
          TVectorD &ixlow_in,TVectorD &ixupp_in,TVectorD &iclow_in,TVectorD &icupp_in);

   // constructor that creates variables objects of specified dimensions.
   TQpVar(Int_t nx,Int_t my,Int_t mz,
      TVectorD &ixlow,TVectorD &ixupp,TVectorD &iclow,TVectorD &icupp);
   TQpVar(const TQpVar &another);

   virtual ~TQpVar() {}

   // Indicates what type is the blocking variable in the step length determination. If kt_block,
   // then the blocking variable is one of the slack variables t for a general lower bound,
   // and so on. Special value kno_block is for the case in which a step length of 1 can be
   // taken without hitting the bound.

   enum EVarBlock { kno_block,kt_block,klambda_block,ku_block,kpi_block,
                    kv_block,kgamma_block,kw_block,kphi_block };

   virtual Double_t GetMu       ();            // compute complementarity gap, obtained by taking the
                                               // inner product of the complementary vectors and dividing
                                               // by the total number of components
                                               // computes mu = (t'lambda +u'pi + v'gamma + w'phi)/
                                               //                    (mclow+mcupp+nxlow+nxupp)
   virtual Double_t MuStep      (TQpVar *step,Double_t alpha);
                                               // compute the complementarity gap resulting from a step
                                               // of length "alpha" along direction "step"
   virtual void     Saxpy       (TQpVar *b,Double_t alpha);
                                               // given variables b, compute a <- a + alpha b,
                                               // where a are the variables in this class

   virtual void     Negate      ();            // negate the value of all the variables in this structure

   virtual Double_t StepBound   (TQpVar *b);   // calculate the largest alpha in (0,1] such that the
                                               // nonnegative variables stay nonnegative in the given
                                               // search direction. In the general QP problem formulation
                                               // this is the largest value of alpha such that
                                               // (t,u,v,w,lambda,pi,phi,gamma) + alpha * (b->t,b->u,
                                               //   b->v,b->w,b->lambda,b->pi,b->phi,b->gamma) >= 0.

   virtual Double_t FindBlocking(TQpVar *step,Double_t &primalValue,Double_t &primalStep,Double_t &dualValue,
                                 Double_t &dualStep,Int_t &firstOrSecond);
                                               // Performs the same function as StepBound, and supplies
                                               // additional information about which component of the
                                               // nonnegative variables is responsible for restricting
                                               // alpha. In terms of the abstract formulation, the
                                               // components have the following meanings.
                                               //
                                               // primalValue: the value of the blocking component of the
                                               // primal variables (u,t,v,w).
                                               // primalStep: the corresponding value of the blocking
                                               // component of the primal step variables (b->u,b->t,
                                               // b->v,b->w)
                                               // dualValue: the value of the blocking component of the
                                               // dual variables (lambda,pi,phi,gamma).
                                               // dualStep: the corresponding value of the blocking
                                               // component of the dual step variables (b->lambda,b->pi,
                                               // b->phi,b->gamma)
                                               // firstOrSecond:  1 if the primal step is blocking, 2
                                               // if the dual step is block, 0 if no step is blocking.

   virtual void     InteriorPoint(Double_t alpha,Double_t beta);
                                               // sets components of (u,t,v,w) to alpha and of
                                               // (lambda,pi,phi,gamma) to beta
   virtual void     ShiftBoundVariables
                                 (Double_t alpha,Double_t beta);
                                               // add alpha to components of (u,t,v,w) and beta to
                                               // components of (lambda,pi,phi,gamma)
   virtual Bool_t   IsInteriorPoint();         // check whether this is an interior point. Useful as a
                                               // sanity check.
   virtual Double_t Violation    ();           // The amount by which the current variables violate the
                                               //  non-negativity constraints.
   virtual void     Print        (Option_t *option="") const;
   virtual Double_t Norm1        ();           // compute the 1-norm of the variables
   virtual Double_t NormInf      ();           // compute the inf-norm of the variables
   virtual Bool_t   ValidNonZeroPattern();

   TQpVar &operator= (const TQpVar &source);

   ClassDef(TQpVar,1)                          // Qp Variables class
};
#endif