/usr/include/root/Math/ChebyshevApprox.h is in libroot-math-mathmore-dev 5.34.30-0ubuntu8.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 | // @(#)root/mathmore:$Id$
// Authors: L. Moneta, A. Zsenei 08/2005
/**********************************************************************
* *
* Copyright (c) 2004 ROOT Foundation, CERN/PH-SFT *
* *
* This library is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License *
* as published by the Free Software Foundation; either version 2 *
* of the License, or (at your option) any later version. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this library (see file COPYING); if not, write *
* to the Free Software Foundation, Inc., 59 Temple Place, Suite *
* 330, Boston, MA 02111-1307 USA, or contact the author. *
* *
**********************************************************************/
// Header file for class ChebyshevApprox
//
// Created by: moneta at Thu Dec 2 14:51:15 2004
//
// Last update: Thu Dec 2 14:51:15 2004
//
#ifndef ROOT_Math_ChebyshevApprox
#define ROOT_Math_ChebyshevApprox
/**
@defgroup NumAlgo Numerical Algorithms
Numerical Algorithm mainly from the \ref MathMore and implemented using the
<A HREF="http://www.gnu.org/software/gsl/manual/html_node/">GSL</A> library
*/
/**
@defgroup FuncApprox Function Approximation (ChebyshevApprox)
@ingroup NumAlgo
*/
#ifndef ROOT_Math_IFunctionfwd
#include "Math/IFunctionfwd.h"
#endif
#ifndef ROOT_Math_GSLFunctionAdapter
#include "Math/GSLFunctionAdapter.h"
#endif
#include <memory>
#include <cstddef>
namespace ROOT {
namespace Math {
class GSLChebSeries;
class GSLFunctionWrapper;
//____________________________________________________________________________
/**
Class describing a Chebyshev series which can be used to approximate a
function in a defined range [a,b] using Chebyshev polynomials.
It uses the algorithm from
<A HREF="http://www.gnu.org/software/gsl/manual/html_node/Chebyshev-Approximations.html">GSL</A>
This class does not support copying
@ingroup FuncApprox
*/
class ChebyshevApprox {
public:
/**
Construct a Chebyshev series approximation to a Function f in range [a,b];
constructor based on functions of type IGenFunction
*/
ChebyshevApprox(const ROOT::Math::IGenFunction & f, double a, double b, size_t n);
/**
Construct a Chebyshev series approximation to a Function f in range [a,b];
constructor based on free functions with gsl_function type signature
*/
ChebyshevApprox(GSLFuncPointer f, void *p, double a, double b, size_t n);
// destructor
virtual ~ChebyshevApprox();
private:
/**
construct a Chebyshev series or order n
The series must be initialized from a function
*/
ChebyshevApprox(size_t n);
// usually copying is non trivial, so we make this unaccessible
ChebyshevApprox(const ChebyshevApprox &);
ChebyshevApprox & operator = (const ChebyshevApprox &);
public:
/**
Evaluate the series at a given point x
*/
double operator() ( double x) const;
/**
Evaluate the series at a given point x estimating both the series result and its absolute error.
The error estimate is made from the first neglected term in the series.
A pair containing result and error is returned
*/
std::pair<double, double> EvalErr( double x) const;
/**
Evaluate the series at a given point, to (at most) the given order n
*/
double operator() ( double x, size_t n) const;
/**
evaluate the series at a given point x to the given order n,
estimating both the series result and its absolute error.
The error estimate is made from the first neglected term in the series.
A pair containing result and error is returned
*/
std::pair<double, double> EvalErr( double x, size_t n) const;
/**
Compute the derivative of the series and return a pointer to a new Chebyshev series with the
derivatives coefficients. The returned pointer must be managed by the user.
*/
//TO DO: implement copying to return by value
ChebyshevApprox * Deriv();
/**
Compute the integral of the series and return a pointer to a new Chebyshev series with the
integral coefficients. The lower limit of the integration is the left range value a.
The returned pointer must be managed by the user
*/
//TO DO: implement copying to return by value
ChebyshevApprox * Integral();
protected:
/**
Initialize series passing function and range
*/
void Initialize( GSLFuncPointer f, void * params, double a, double b);
private:
size_t fOrder;
GSLChebSeries * fSeries;
GSLFunctionWrapper * fFunction; // pointer to function
};
} // namespace Math
} // namespace ROOT
#endif /* ROOT_Math_ChebyshevApprox */
|