This file is indexed.

/usr/include/root/TEfficiency.h is in libroot-hist-dev 5.34.30-0ubuntu8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#ifndef ROOT_TEfficiency
#define ROOT_TEfficiency

//standard header
#include <vector>
#include <utility>

//ROOT header
#ifndef ROOT_TNamed
#include "TNamed.h"
#endif

#ifndef ROOT_TAttLine
#include "TAttLine.h"
#endif

#ifndef ROOT_TAttFill
#include "TAttFill.h"
#endif

#ifndef ROOT_TAttMarker
#include "TAttMarker.h"
#endif

class TCollection;
class TF1;
class TGraphAsymmErrors;
class TH1;
class TH2;
class TList;

//|TEfficiency
//------------------------

class TEfficiency: public TNamed, public TAttLine, public TAttFill, public TAttMarker
{
public:  
      //enumaration type for different statistic options for calculating confidence intervals
      //kF* ... frequentist methods; kB* ... bayesian methods      
   enum EStatOption {
      kFCP = 0,                         //Clopper-Pearson interval (recommended by PDG)
      kFNormal,                         //normal approximation
      kFWilson,                         //Wilson interval
      kFAC,                             //Agresti-Coull interval
      kFFC,                             //Feldman-Cousins interval
      kBJeffrey,                        //Jeffrey interval (Prior ~ Beta(0.5,0.5)
      kBUniform,                        //Prior ~ Uniform = Beta(1,1)
      kBBayesian                        //user specified Prior ~ Beta(fBeta_alpha,fBeta_beta)
   };

protected:

      Double_t      fBeta_alpha;             //global parameter for prior beta distribution (default = 1)
      Double_t      fBeta_beta;              //global parameter for prior beta distribution (default = 1)
      std::vector<std::pair<Double_t, Double_t> > fBeta_bin_params;  // parameter for prior beta distribution different bin by bin 
                                                                 // (default vector is empty)
      Double_t      (*fBoundary)(Int_t,Int_t,Double_t,Bool_t);               //!pointer to a method calculating the boundaries of confidence intervals
      Double_t      fConfLevel;              //confidence level (default = 0.683, 1 sigma)
      TDirectory*   fDirectory;              //!pointer to directory holding this TEfficiency object
      TList*        fFunctions;              //->pointer to list of functions
      TGraphAsymmErrors* fPaintGraph;        //!temporary graph for painting
      TH2*          fPaintHisto;             //!temporary histogram for painting      
      TH1*          fPassedHistogram;        //histogram for events which passed certain criteria
      EStatOption   fStatisticOption;        //defines how the confidence intervals are determined
      TH1*          fTotalHistogram;         //histogram for total number of events
      Double_t      fWeight;                 //weight for all events (default = 1)

      enum{
         kIsBayesian       = BIT(14),              //bayesian statistics are used
         kPosteriorMode    = BIT(15),              //use posterior mean for best estimate (Bayesian statistics)
         kShortestInterval = BIT(16),              // use shortest interval
         kUseBinPrior      = BIT(17),              // use a different prior for each bin
         kUseWeights       = BIT(18)               // use weights
      };

      void          Build(const char* name,const char* title);   
      void          FillGraph(TGraphAsymmErrors * graph, Option_t * opt) const;
      void          FillHistogram(TH2 * h2) const;
      
public:
      TEfficiency();   
      TEfficiency(const TH1& passed,const TH1& total);
      TEfficiency(const char* name,const char* title,Int_t nbins,
                  const Double_t* xbins);
      TEfficiency(const char* name,const char* title,Int_t nbins,Double_t xlow,
                  Double_t xup);
      TEfficiency(const char* name,const char* title,Int_t nbinsx,
                  Double_t xlow,Double_t xup,Int_t nbinsy,Double_t ylow,
                  Double_t yup);
      TEfficiency(const char* name,const char* title,Int_t nbinsx,
                  const Double_t* xbins,Int_t nbinsy,const Double_t* ybins);
      TEfficiency(const char* name,const char* title,Int_t nbinsx,
                  Double_t xlow,Double_t xup,Int_t nbinsy,Double_t ylow,
                  Double_t yup,Int_t nbinsz,Double_t zlow,Double_t zup);
      TEfficiency(const char* name,const char* title,Int_t nbinsx,
                  const Double_t* xbins,Int_t nbinsy,const Double_t* ybins,
                  Int_t nbinsz,const Double_t* zbins);
      TEfficiency(const TEfficiency& heff);
      ~TEfficiency();
      
      void          Add(const TEfficiency& rEff) {*this += rEff;}
      TGraphAsymmErrors*   CreateGraph(Option_t * opt = "") const;
      TH2*          CreateHistogram(Option_t * opt = "") const;
      virtual Int_t DistancetoPrimitive(Int_t px, Int_t py);
      void          Draw(Option_t* opt = "");
      virtual void  ExecuteEvent(Int_t event, Int_t px, Int_t py);
      void          Fill(Bool_t bPassed,Double_t x,Double_t y=0,Double_t z=0);
      void          FillWeighted(Bool_t bPassed,Double_t weight,Double_t x,Double_t y=0,Double_t z=0);
      Int_t         FindFixBin(Double_t x,Double_t y=0,Double_t z=0) const;
      Int_t         Fit(TF1* f1,Option_t* opt="");
      // use trick of -1 to return global parameters
      Double_t      GetBetaAlpha(Int_t bin = -1) const {return (fBeta_bin_params.size() > (UInt_t)bin) ? fBeta_bin_params[bin].first : fBeta_alpha;}
      Double_t      GetBetaBeta(Int_t bin =  -1) const {return (fBeta_bin_params.size() > (UInt_t)bin) ? fBeta_bin_params[bin].second : fBeta_beta;}  
      Double_t      GetConfidenceLevel() const {return fConfLevel;}
      TH1*          GetCopyPassedHisto() const;
      TH1*          GetCopyTotalHisto() const;
      Int_t         GetDimension() const;
      TDirectory*   GetDirectory() const {return fDirectory;}
      Double_t      GetEfficiency(Int_t bin) const;
      Double_t      GetEfficiencyErrorLow(Int_t bin) const;
      Double_t      GetEfficiencyErrorUp(Int_t bin) const;
      Int_t         GetGlobalBin(Int_t binx,Int_t biny=0,Int_t binz=0) const;
      TGraphAsymmErrors*   GetPaintedGraph() const { return fPaintGraph; }     
      TH2*          GetPaintedHistogram() const { return fPaintHisto; }     
      TList*        GetListOfFunctions();
      const TH1*    GetPassedHistogram() const {return fPassedHistogram;}
      EStatOption   GetStatisticOption() const {return fStatisticOption;}
      const TH1*    GetTotalHistogram() const {return fTotalHistogram;}
      Double_t      GetWeight() const {return fWeight;}
      Long64_t      Merge(TCollection* list);      
      TEfficiency&  operator+=(const TEfficiency& rhs);
      TEfficiency&  operator=(const TEfficiency& rhs);
      void          Paint(Option_t* opt);
      void          SavePrimitive(ostream& out,Option_t* opt="");
      void          SetBetaAlpha(Double_t alpha);
      void          SetBetaBeta(Double_t beta);    
      void          SetBetaBinParameters(Int_t bin, Double_t alpha, Double_t beta);
      void          SetConfidenceLevel(Double_t level);
      void          SetDirectory(TDirectory* dir);
      void          SetName(const char* name);
      Bool_t        SetPassedEvents(Int_t bin,Int_t events);
      Bool_t        SetPassedHistogram(const TH1& rPassed,Option_t* opt);
      void          SetPosteriorMode(Bool_t on = true) { SetBit(kPosteriorMode,on); SetShortestInterval(on); } 
      void          SetPosteriorAverage(Bool_t on = true) { SetBit(kPosteriorMode,!on); } 
      void          SetShortestInterval(Bool_t on = true) { SetBit(kShortestInterval,on); } 
      void          SetCentralInterval(Bool_t on = true) { SetBit(kShortestInterval,!on); } 
      void          SetStatisticOption(EStatOption option);
      Bool_t        SetBins(Int_t nx, Double_t xmin, Double_t xmax);
      Bool_t        SetBins(Int_t nx, const Double_t *xBins);
      Bool_t        SetBins(Int_t nx, Double_t xmin, Double_t xmax, Int_t ny, Double_t ymin, Double_t ymax);
      Bool_t        SetBins(Int_t nx, const Double_t *xBins, Int_t ny, const Double_t *yBins);
      Bool_t        SetBins(Int_t nx, Double_t xmin, Double_t xmax, Int_t ny, Double_t ymin, Double_t ymax,
                            Int_t nz, Double_t zmin, Double_t zmax);
      Bool_t        SetBins(Int_t nx, const Double_t *xBins, Int_t ny, const Double_t * yBins, Int_t nz,
                            const Double_t *zBins);

      void          SetTitle(const char* title);
      Bool_t        SetTotalEvents(Int_t bin,Int_t events);
      Bool_t        SetTotalHistogram(const TH1& rTotal,Option_t* opt);
      void          SetUseWeightedEvents();
      void          SetWeight(Double_t weight);
      Bool_t        UsesBayesianStat() const {return TestBit(kIsBayesian);}
      Bool_t        UsesPosteriorMode() const   {return TestBit(kPosteriorMode) && TestBit(kIsBayesian);} 
      Bool_t        UsesShortestInterval() const   {return TestBit(kShortestInterval) && TestBit(kIsBayesian);} 
      Bool_t        UsesPosteriorAverage() const   {return !UsesPosteriorMode();} 
      Bool_t        UsesCentralInterval() const   {return !UsesShortestInterval();}
      Bool_t        UsesWeights() const {return TestBit(kUseWeights);}

      static Bool_t CheckBinning(const TH1& pass,const TH1& total);
      static Bool_t CheckConsistency(const TH1& pass,const TH1& total,Option_t* opt="");
      static Bool_t CheckEntries(const TH1& pass,const TH1& total,Option_t* opt="");
      static Double_t Combine(Double_t& up,Double_t& low,Int_t n,const Int_t* pass,const Int_t* total,
                              Double_t alpha,Double_t beta,Double_t level=0.683,
                              const Double_t* w=0,Option_t* opt="");
      static TGraphAsymmErrors* Combine(TCollection* pList,Option_t* opt="",Int_t n=0,const Double_t* w=0);
      
      //calculating boundaries of confidence intervals
      static Double_t AgrestiCoull(Int_t total,Int_t passed,Double_t level,Bool_t bUpper);
      static Double_t ClopperPearson(Int_t total,Int_t passed,Double_t level,Bool_t bUpper);
      static Double_t Normal(Int_t total,Int_t passed,Double_t level,Bool_t bUpper);
      static Double_t Wilson(Int_t total,Int_t passed,Double_t level,Bool_t bUpper);
      static Double_t FeldmanCousins(Int_t total,Int_t passed,Double_t level,Bool_t bUpper);
      static Bool_t FeldmanCousinsInterval(Int_t total,Int_t passed,Double_t level,Double_t & lower, Double_t & upper);
      // Bayesian functions 
      static Double_t Bayesian(Int_t total,Int_t passed,Double_t level,Double_t alpha,Double_t beta,Bool_t bUpper, Bool_t bShortest = false);
      // helper functions for Bayesian statistics  
      static Double_t BetaCentralInterval(Double_t level,Double_t alpha,Double_t beta,Bool_t bUpper);
      static Bool_t   BetaShortestInterval(Double_t level,Double_t alpha,Double_t beta,Double_t & lower, Double_t & upper);
      static Double_t BetaMean(Double_t alpha,Double_t beta);
      static Double_t BetaMode(Double_t alpha,Double_t beta);
      
      ClassDef(TEfficiency,2)     //calculating efficiencies
};

const TEfficiency operator+(const TEfficiency& lhs,const TEfficiency& rhs);

#endif