This file is indexed.

/usr/include/rocksdb/options.h is in librocksdb-dev 4.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
// Copyright (c) 2013, Facebook, Inc.  All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.

#ifndef STORAGE_ROCKSDB_INCLUDE_OPTIONS_H_
#define STORAGE_ROCKSDB_INCLUDE_OPTIONS_H_

#include <stddef.h>
#include <stdint.h>
#include <string>
#include <memory>
#include <vector>
#include <limits>
#include <unordered_map>

#include "rocksdb/version.h"
#include "rocksdb/listener.h"
#include "rocksdb/universal_compaction.h"

#ifdef max
#undef max
#endif

namespace rocksdb {

class Cache;
class CompactionFilter;
class CompactionFilterFactory;
class Comparator;
class Env;
enum InfoLogLevel : unsigned char;
class FilterPolicy;
class Logger;
class MergeOperator;
class Snapshot;
class TableFactory;
class MemTableRepFactory;
class TablePropertiesCollectorFactory;
class RateLimiter;
class DeleteScheduler;
class Slice;
class SliceTransform;
class Statistics;
class InternalKeyComparator;

// DB contents are stored in a set of blocks, each of which holds a
// sequence of key,value pairs.  Each block may be compressed before
// being stored in a file.  The following enum describes which
// compression method (if any) is used to compress a block.
enum CompressionType : char {
  // NOTE: do not change the values of existing entries, as these are
  // part of the persistent format on disk.
  kNoCompression = 0x0,
  kSnappyCompression = 0x1,
  kZlibCompression = 0x2,
  kBZip2Compression = 0x3,
  kLZ4Compression = 0x4,
  kLZ4HCCompression = 0x5,
  // zstd format is not finalized yet so it's subject to changes.
  kZSTDNotFinalCompression = 0x40,
};

enum CompactionStyle : char {
  // level based compaction style
  kCompactionStyleLevel = 0x0,
  // Universal compaction style
  // Not supported in ROCKSDB_LITE.
  kCompactionStyleUniversal = 0x1,
  // FIFO compaction style
  // Not supported in ROCKSDB_LITE
  kCompactionStyleFIFO = 0x2,
  // Disable background compaction. Compaction jobs are submitted
  // via CompactFiles().
  // Not supported in ROCKSDB_LITE
  kCompactionStyleNone = 0x3,
};

enum CompactionPri : char {
  // Slightly Priotize larger files by size compensated by #deletes
  kCompactionPriByCompensatedSize = 0x0,
  // First compact files whose data is oldest.
  kCompactionPriByLargestSeq = 0x1,
};

enum class WALRecoveryMode : char {
  // Original levelDB recovery
  // We tolerate incomplete record in trailing data on all logs
  // Use case : This is legacy behavior (default)
  kTolerateCorruptedTailRecords = 0x00,
  // Recover from clean shutdown
  // We don't expect to find any corruption in the WAL
  // Use case : This is ideal for unit tests and rare applications that
  // can require high consistency guarantee
  kAbsoluteConsistency = 0x01,
  // Recover to point-in-time consistency
  // We stop the WAL playback on discovering WAL inconsistency
  // Use case : Ideal for systems that have disk controller cache like
  // hard disk, SSD without super capacitor that store related data
  kPointInTimeRecovery = 0x02,
  // Recovery after a disaster
  // We ignore any corruption in the WAL and try to salvage as much data as
  // possible
  // Use case : Ideal for last ditch effort to recover data or systems that
  // operate with low grade unrelated data
  kSkipAnyCorruptedRecords = 0x03,
};

struct CompactionOptionsFIFO {
  // once the total sum of table files reaches this, we will delete the oldest
  // table file
  // Default: 1GB
  uint64_t max_table_files_size;

  CompactionOptionsFIFO() : max_table_files_size(1 * 1024 * 1024 * 1024) {}
};

// Compression options for different compression algorithms like Zlib
struct CompressionOptions {
  int window_bits;
  int level;
  int strategy;
  CompressionOptions() : window_bits(-14), level(-1), strategy(0) {}
  CompressionOptions(int wbits, int _lev, int _strategy)
      : window_bits(wbits), level(_lev), strategy(_strategy) {}
};

enum UpdateStatus {    // Return status For inplace update callback
  UPDATE_FAILED   = 0, // Nothing to update
  UPDATED_INPLACE = 1, // Value updated inplace
  UPDATED         = 2, // No inplace update. Merged value set
};

struct DbPath {
  std::string path;
  uint64_t target_size;  // Target size of total files under the path, in byte.

  DbPath() : target_size(0) {}
  DbPath(const std::string& p, uint64_t t) : path(p), target_size(t) {}
};

struct Options;

struct ColumnFamilyOptions {
  // Some functions that make it easier to optimize RocksDB

  // Use this if you don't need to keep the data sorted, i.e. you'll never use
  // an iterator, only Put() and Get() API calls
  //
  // Not supported in ROCKSDB_LITE
  ColumnFamilyOptions* OptimizeForPointLookup(
      uint64_t block_cache_size_mb);

  // Default values for some parameters in ColumnFamilyOptions are not
  // optimized for heavy workloads and big datasets, which means you might
  // observe write stalls under some conditions. As a starting point for tuning
  // RocksDB options, use the following two functions:
  // * OptimizeLevelStyleCompaction -- optimizes level style compaction
  // * OptimizeUniversalStyleCompaction -- optimizes universal style compaction
  // Universal style compaction is focused on reducing Write Amplification
  // Factor for big data sets, but increases Space Amplification. You can learn
  // more about the different styles here:
  // https://github.com/facebook/rocksdb/wiki/Rocksdb-Architecture-Guide
  // Make sure to also call IncreaseParallelism(), which will provide the
  // biggest performance gains.
  // Note: we might use more memory than memtable_memory_budget during high
  // write rate period
  //
  // OptimizeUniversalStyleCompaction is not supported in ROCKSDB_LITE
  ColumnFamilyOptions* OptimizeLevelStyleCompaction(
      uint64_t memtable_memory_budget = 512 * 1024 * 1024);
  ColumnFamilyOptions* OptimizeUniversalStyleCompaction(
      uint64_t memtable_memory_budget = 512 * 1024 * 1024);

  // -------------------
  // Parameters that affect behavior

  // Comparator used to define the order of keys in the table.
  // Default: a comparator that uses lexicographic byte-wise ordering
  //
  // REQUIRES: The client must ensure that the comparator supplied
  // here has the same name and orders keys *exactly* the same as the
  // comparator provided to previous open calls on the same DB.
  const Comparator* comparator;

  // REQUIRES: The client must provide a merge operator if Merge operation
  // needs to be accessed. Calling Merge on a DB without a merge operator
  // would result in Status::NotSupported. The client must ensure that the
  // merge operator supplied here has the same name and *exactly* the same
  // semantics as the merge operator provided to previous open calls on
  // the same DB. The only exception is reserved for upgrade, where a DB
  // previously without a merge operator is introduced to Merge operation
  // for the first time. It's necessary to specify a merge operator when
  // openning the DB in this case.
  // Default: nullptr
  std::shared_ptr<MergeOperator> merge_operator;

  // A single CompactionFilter instance to call into during compaction.
  // Allows an application to modify/delete a key-value during background
  // compaction.
  //
  // If the client requires a new compaction filter to be used for different
  // compaction runs, it can specify compaction_filter_factory instead of this
  // option.  The client should specify only one of the two.
  // compaction_filter takes precedence over compaction_filter_factory if
  // client specifies both.
  //
  // If multithreaded compaction is being used, the supplied CompactionFilter
  // instance may be used from different threads concurrently and so should be
  // thread-safe.
  //
  // Default: nullptr
  const CompactionFilter* compaction_filter;

  // This is a factory that provides compaction filter objects which allow
  // an application to modify/delete a key-value during background compaction.
  //
  // A new filter will be created on each compaction run.  If multithreaded
  // compaction is being used, each created CompactionFilter will only be used
  // from a single thread and so does not need to be thread-safe.
  //
  // Default: nullptr
  std::shared_ptr<CompactionFilterFactory> compaction_filter_factory;

  // -------------------
  // Parameters that affect performance

  // Amount of data to build up in memory (backed by an unsorted log
  // on disk) before converting to a sorted on-disk file.
  //
  // Larger values increase performance, especially during bulk loads.
  // Up to max_write_buffer_number write buffers may be held in memory
  // at the same time,
  // so you may wish to adjust this parameter to control memory usage.
  // Also, a larger write buffer will result in a longer recovery time
  // the next time the database is opened.
  //
  // Note that write_buffer_size is enforced per column family.
  // See db_write_buffer_size for sharing memory across column families.
  //
  // Default: 4MB
  //
  // Dynamically changeable through SetOptions() API
  size_t write_buffer_size;

  // The maximum number of write buffers that are built up in memory.
  // The default and the minimum number is 2, so that when 1 write buffer
  // is being flushed to storage, new writes can continue to the other
  // write buffer.
  //
  // Default: 2
  //
  // Dynamically changeable through SetOptions() API
  int max_write_buffer_number;

  // The minimum number of write buffers that will be merged together
  // before writing to storage.  If set to 1, then
  // all write buffers are fushed to L0 as individual files and this increases
  // read amplification because a get request has to check in all of these
  // files. Also, an in-memory merge may result in writing lesser
  // data to storage if there are duplicate records in each of these
  // individual write buffers.  Default: 1
  int min_write_buffer_number_to_merge;

  // The total maximum number of write buffers to maintain in memory including
  // copies of buffers that have already been flushed.  Unlike
  // max_write_buffer_number, this parameter does not affect flushing.
  // This controls the minimum amount of write history that will be available
  // in memory for conflict checking when Transactions are used.
  // If this value is too low, some transactions may fail at commit time due
  // to not being able to determine whether there were any write conflicts.
  //
  // Setting this value to 0 will cause write buffers to be freed immediately
  // after they are flushed.
  // If this value is set to -1, 'max_write_buffer_number' will be used.
  //
  // Default:
  // If using a TransactionDB/OptimisticTransactionDB, the default value will
  // be set to the value of 'max_write_buffer_number' if it is not explicitly
  // set by the user.  Otherwise, the default is 0.
  int max_write_buffer_number_to_maintain;

  // Compress blocks using the specified compression algorithm.  This
  // parameter can be changed dynamically.
  //
  // Default: kSnappyCompression, if it's supported. If snappy is not linked
  // with the library, the default is kNoCompression.
  //
  // Typical speeds of kSnappyCompression on an Intel(R) Core(TM)2 2.4GHz:
  //    ~200-500MB/s compression
  //    ~400-800MB/s decompression
  // Note that these speeds are significantly faster than most
  // persistent storage speeds, and therefore it is typically never
  // worth switching to kNoCompression.  Even if the input data is
  // incompressible, the kSnappyCompression implementation will
  // efficiently detect that and will switch to uncompressed mode.
  CompressionType compression;

  // Different levels can have different compression policies. There
  // are cases where most lower levels would like to use quick compression
  // algorithms while the higher levels (which have more data) use
  // compression algorithms that have better compression but could
  // be slower. This array, if non-empty, should have an entry for
  // each level of the database; these override the value specified in
  // the previous field 'compression'.
  //
  // NOTICE if level_compaction_dynamic_level_bytes=true,
  // compression_per_level[0] still determines L0, but other elements
  // of the array are based on base level (the level L0 files are merged
  // to), and may not match the level users see from info log for metadata.
  // If L0 files are merged to level-n, then, for i>0, compression_per_level[i]
  // determines compaction type for level n+i-1.
  // For example, if we have three 5 levels, and we determine to merge L0
  // data to L4 (which means L1..L3 will be empty), then the new files go to
  // L4 uses compression type compression_per_level[1].
  // If now L0 is merged to L2. Data goes to L2 will be compressed
  // according to compression_per_level[1], L3 using compression_per_level[2]
  // and L4 using compression_per_level[3]. Compaction for each level can
  // change when data grows.
  std::vector<CompressionType> compression_per_level;

  // different options for compression algorithms
  CompressionOptions compression_opts;

  // If non-nullptr, use the specified function to determine the
  // prefixes for keys.  These prefixes will be placed in the filter.
  // Depending on the workload, this can reduce the number of read-IOP
  // cost for scans when a prefix is passed via ReadOptions to
  // db.NewIterator().  For prefix filtering to work properly,
  // "prefix_extractor" and "comparator" must be such that the following
  // properties hold:
  //
  // 1) key.starts_with(prefix(key))
  // 2) Compare(prefix(key), key) <= 0.
  // 3) If Compare(k1, k2) <= 0, then Compare(prefix(k1), prefix(k2)) <= 0
  // 4) prefix(prefix(key)) == prefix(key)
  //
  // Default: nullptr
  std::shared_ptr<const SliceTransform> prefix_extractor;

  // Number of levels for this database
  int num_levels;

  // Number of files to trigger level-0 compaction. A value <0 means that
  // level-0 compaction will not be triggered by number of files at all.
  //
  // Default: 4
  //
  // Dynamically changeable through SetOptions() API
  int level0_file_num_compaction_trigger;

  // Soft limit on number of level-0 files. We start slowing down writes at this
  // point. A value <0 means that no writing slow down will be triggered by
  // number of files in level-0.
  //
  // Dynamically changeable through SetOptions() API
  int level0_slowdown_writes_trigger;

  // Maximum number of level-0 files.  We stop writes at this point.
  //
  // Dynamically changeable through SetOptions() API
  int level0_stop_writes_trigger;

  // This does not do anything anymore. Deprecated.
  int max_mem_compaction_level;

  // Target file size for compaction.
  // target_file_size_base is per-file size for level-1.
  // Target file size for level L can be calculated by
  // target_file_size_base * (target_file_size_multiplier ^ (L-1))
  // For example, if target_file_size_base is 2MB and
  // target_file_size_multiplier is 10, then each file on level-1 will
  // be 2MB, and each file on level 2 will be 20MB,
  // and each file on level-3 will be 200MB.
  //
  // Default: 2MB.
  //
  // Dynamically changeable through SetOptions() API
  uint64_t target_file_size_base;

  // By default target_file_size_multiplier is 1, which means
  // by default files in different levels will have similar size.
  //
  // Dynamically changeable through SetOptions() API
  int target_file_size_multiplier;

  // Control maximum total data size for a level.
  // max_bytes_for_level_base is the max total for level-1.
  // Maximum number of bytes for level L can be calculated as
  // (max_bytes_for_level_base) * (max_bytes_for_level_multiplier ^ (L-1))
  // For example, if max_bytes_for_level_base is 20MB, and if
  // max_bytes_for_level_multiplier is 10, total data size for level-1
  // will be 20MB, total file size for level-2 will be 200MB,
  // and total file size for level-3 will be 2GB.
  //
  // Default: 10MB.
  //
  // Dynamically changeable through SetOptions() API
  uint64_t max_bytes_for_level_base;

  // If true, RocksDB will pick target size of each level dynamically.
  // We will pick a base level b >= 1. L0 will be directly merged into level b,
  // instead of always into level 1. Level 1 to b-1 need to be empty.
  // We try to pick b and its target size so that
  // 1. target size is in the range of
  //   (max_bytes_for_level_base / max_bytes_for_level_multiplier,
  //    max_bytes_for_level_base]
  // 2. target size of the last level (level num_levels-1) equals to extra size
  //    of the level.
  // At the same time max_bytes_for_level_multiplier and
  // max_bytes_for_level_multiplier_additional are still satisfied.
  //
  // With this option on, from an empty DB, we make last level the base level,
  // which means merging L0 data into the last level, until it exceeds
  // max_bytes_for_level_base. And then we make the second last level to be
  // base level, to start to merge L0 data to second last level, with its
  // target size to be 1/max_bytes_for_level_multiplier of the last level's
  // extra size. After the data accumulates more so that we need to move the
  // base level to the third last one, and so on.
  //
  // For example, assume max_bytes_for_level_multiplier=10, num_levels=6,
  // and max_bytes_for_level_base=10MB.
  // Target sizes of level 1 to 5 starts with:
  // [- - - - 10MB]
  // with base level is level. Target sizes of level 1 to 4 are not applicable
  // because they will not be used.
  // Until the size of Level 5 grows to more than 10MB, say 11MB, we make
  // base target to level 4 and now the targets looks like:
  // [- - - 1.1MB 11MB]
  // While data are accumulated, size targets are tuned based on actual data
  // of level 5. When level 5 has 50MB of data, the target is like:
  // [- - - 5MB 50MB]
  // Until level 5's actual size is more than 100MB, say 101MB. Now if we keep
  // level 4 to be the base level, its target size needs to be 10.1MB, which
  // doesn't satisfy the target size range. So now we make level 3 the target
  // size and the target sizes of the levels look like:
  // [- - 1.01MB 10.1MB 101MB]
  // In the same way, while level 5 further grows, all levels' targets grow,
  // like
  // [- - 5MB 50MB 500MB]
  // Until level 5 exceeds 1000MB and becomes 1001MB, we make level 2 the
  // base level and make levels' target sizes like this:
  // [- 1.001MB 10.01MB 100.1MB 1001MB]
  // and go on...
  //
  // By doing it, we give max_bytes_for_level_multiplier a priority against
  // max_bytes_for_level_base, for a more predictable LSM tree shape. It is
  // useful to limit worse case space amplification.
  //
  // max_bytes_for_level_multiplier_additional is ignored with this flag on.
  //
  // Turning this feature on or off for an existing DB can cause unexpected
  // LSM tree structure so it's not recommended.
  //
  // NOTE: this option is experimental
  //
  // Default: false
  bool level_compaction_dynamic_level_bytes;

  // Default: 10.
  //
  // Dynamically changeable through SetOptions() API
  int max_bytes_for_level_multiplier;

  // Different max-size multipliers for different levels.
  // These are multiplied by max_bytes_for_level_multiplier to arrive
  // at the max-size of each level.
  //
  // Default: 1
  //
  // Dynamically changeable through SetOptions() API
  std::vector<int> max_bytes_for_level_multiplier_additional;

  // Maximum number of bytes in all compacted files.  We avoid expanding
  // the lower level file set of a compaction if it would make the
  // total compaction cover more than
  // (expanded_compaction_factor * targetFileSizeLevel()) many bytes.
  //
  // Dynamically changeable through SetOptions() API
  int expanded_compaction_factor;

  // Maximum number of bytes in all source files to be compacted in a
  // single compaction run. We avoid picking too many files in the
  // source level so that we do not exceed the total source bytes
  // for compaction to exceed
  // (source_compaction_factor * targetFileSizeLevel()) many bytes.
  // Default:1, i.e. pick maxfilesize amount of data as the source of
  // a compaction.
  //
  // Dynamically changeable through SetOptions() API
  int source_compaction_factor;

  // Control maximum bytes of overlaps in grandparent (i.e., level+2) before we
  // stop building a single file in a level->level+1 compaction.
  //
  // Dynamically changeable through SetOptions() API
  int max_grandparent_overlap_factor;

  // Puts are delayed to options.delayed_write_rate when any level has a
  // compaction score that exceeds soft_rate_limit. This is ignored when == 0.0.
  //
  // Default: 0 (disabled)
  //
  // Dynamically changeable through SetOptions() API
  double soft_rate_limit;

  // DEPRECATED -- this options is no longer usde
  double hard_rate_limit;

  // All writes are stopped if estimated bytes needed to be compaction exceed
  // this threshold.
  //
  // Default: 0 (disabled)
  uint64_t hard_pending_compaction_bytes_limit;

  // DEPRECATED -- this options is no longer used
  unsigned int rate_limit_delay_max_milliseconds;

  // size of one block in arena memory allocation.
  // If <= 0, a proper value is automatically calculated (usually 1/8 of
  // writer_buffer_size, rounded up to a multiple of 4KB).
  //
  // There are two additonal restriction of the The specified size:
  // (1) size should be in the range of [4096, 2 << 30] and
  // (2) be the multiple of the CPU word (which helps with the memory
  // alignment).
  //
  // We'll automatically check and adjust the size number to make sure it
  // conforms to the restrictions.
  //
  // Default: 0
  //
  // Dynamically changeable through SetOptions() API
  size_t arena_block_size;

  // Disable automatic compactions. Manual compactions can still
  // be issued on this column family
  //
  // Dynamically changeable through SetOptions() API
  bool disable_auto_compactions;

  // DEPREACTED
  // Does not have any effect.
  bool purge_redundant_kvs_while_flush;

  // The compaction style. Default: kCompactionStyleLevel
  CompactionStyle compaction_style;

  // If level compaction_style = kCompactionStyleLevel, for each level,
  // which files are prioritized to be picked to compact.
  // Default: kCompactionPriByCompensatedSize
  CompactionPri compaction_pri;

  // If true, compaction will verify checksum on every read that happens
  // as part of compaction
  //
  // Default: true
  //
  // Dynamically changeable through SetOptions() API
  bool verify_checksums_in_compaction;

  // The options needed to support Universal Style compactions
  CompactionOptionsUniversal compaction_options_universal;

  // The options for FIFO compaction style
  CompactionOptionsFIFO compaction_options_fifo;

  // Use KeyMayExist API to filter deletes when this is true.
  // If KeyMayExist returns false, i.e. the key definitely does not exist, then
  // the delete is a noop. KeyMayExist only incurs in-memory look up.
  // This optimization avoids writing the delete to storage when appropriate.
  //
  // Default: false
  //
  // Dynamically changeable through SetOptions() API
  bool filter_deletes;

  // An iteration->Next() sequentially skips over keys with the same
  // user-key unless this option is set. This number specifies the number
  // of keys (with the same userkey) that will be sequentially
  // skipped before a reseek is issued.
  //
  // Default: 8
  //
  // Dynamically changeable through SetOptions() API
  uint64_t max_sequential_skip_in_iterations;

  // This is a factory that provides MemTableRep objects.
  // Default: a factory that provides a skip-list-based implementation of
  // MemTableRep.
  std::shared_ptr<MemTableRepFactory> memtable_factory;

  // This is a factory that provides TableFactory objects.
  // Default: a block-based table factory that provides a default
  // implementation of TableBuilder and TableReader with default
  // BlockBasedTableOptions.
  std::shared_ptr<TableFactory> table_factory;

  // Block-based table related options are moved to BlockBasedTableOptions.
  // Related options that were originally here but now moved include:
  //   no_block_cache
  //   block_cache
  //   block_cache_compressed
  //   block_size
  //   block_size_deviation
  //   block_restart_interval
  //   filter_policy
  //   whole_key_filtering
  // If you'd like to customize some of these options, you will need to
  // use NewBlockBasedTableFactory() to construct a new table factory.

  // This option allows user to to collect their own interested statistics of
  // the tables.
  // Default: empty vector -- no user-defined statistics collection will be
  // performed.
  typedef std::vector<std::shared_ptr<TablePropertiesCollectorFactory>>
      TablePropertiesCollectorFactories;
  TablePropertiesCollectorFactories table_properties_collector_factories;

  // Allows thread-safe inplace updates. If this is true, there is no way to
  // achieve point-in-time consistency using snapshot or iterator (assuming
  // concurrent updates). Hence iterator and multi-get will return results
  // which are not consistent as of any point-in-time.
  // If inplace_callback function is not set,
  //   Put(key, new_value) will update inplace the existing_value iff
  //   * key exists in current memtable
  //   * new sizeof(new_value) <= sizeof(existing_value)
  //   * existing_value for that key is a put i.e. kTypeValue
  // If inplace_callback function is set, check doc for inplace_callback.
  // Default: false.
  bool inplace_update_support;

  // Number of locks used for inplace update
  // Default: 10000, if inplace_update_support = true, else 0.
  //
  // Dynamically changeable through SetOptions() API
  size_t inplace_update_num_locks;

  // existing_value - pointer to previous value (from both memtable and sst).
  //                  nullptr if key doesn't exist
  // existing_value_size - pointer to size of existing_value).
  //                       nullptr if key doesn't exist
  // delta_value - Delta value to be merged with the existing_value.
  //               Stored in transaction logs.
  // merged_value - Set when delta is applied on the previous value.

  // Applicable only when inplace_update_support is true,
  // this callback function is called at the time of updating the memtable
  // as part of a Put operation, lets say Put(key, delta_value). It allows the
  // 'delta_value' specified as part of the Put operation to be merged with
  // an 'existing_value' of the key in the database.

  // If the merged value is smaller in size that the 'existing_value',
  // then this function can update the 'existing_value' buffer inplace and
  // the corresponding 'existing_value'_size pointer, if it wishes to.
  // The callback should return UpdateStatus::UPDATED_INPLACE.
  // In this case. (In this case, the snapshot-semantics of the rocksdb
  // Iterator is not atomic anymore).

  // If the merged value is larger in size than the 'existing_value' or the
  // application does not wish to modify the 'existing_value' buffer inplace,
  // then the merged value should be returned via *merge_value. It is set by
  // merging the 'existing_value' and the Put 'delta_value'. The callback should
  // return UpdateStatus::UPDATED in this case. This merged value will be added
  // to the memtable.

  // If merging fails or the application does not wish to take any action,
  // then the callback should return UpdateStatus::UPDATE_FAILED.

  // Please remember that the original call from the application is Put(key,
  // delta_value). So the transaction log (if enabled) will still contain (key,
  // delta_value). The 'merged_value' is not stored in the transaction log.
  // Hence the inplace_callback function should be consistent across db reopens.

  // Default: nullptr
  UpdateStatus (*inplace_callback)(char* existing_value,
                                   uint32_t* existing_value_size,
                                   Slice delta_value,
                                   std::string* merged_value);

  // if prefix_extractor is set and bloom_bits is not 0, create prefix bloom
  // for memtable
  //
  // Dynamically changeable through SetOptions() API
  uint32_t memtable_prefix_bloom_bits;

  // number of hash probes per key
  //
  // Dynamically changeable through SetOptions() API
  uint32_t memtable_prefix_bloom_probes;

  // Page size for huge page TLB for bloom in memtable. If <=0, not allocate
  // from huge page TLB but from malloc.
  // Need to reserve huge pages for it to be allocated. For example:
  //      sysctl -w vm.nr_hugepages=20
  // See linux doc Documentation/vm/hugetlbpage.txt
  //
  // Dynamically changeable through SetOptions() API
  size_t memtable_prefix_bloom_huge_page_tlb_size;

  // Control locality of bloom filter probes to improve cache miss rate.
  // This option only applies to memtable prefix bloom and plaintable
  // prefix bloom. It essentially limits every bloom checking to one cache line.
  // This optimization is turned off when set to 0, and positive number to turn
  // it on.
  // Default: 0
  uint32_t bloom_locality;

  // Maximum number of successive merge operations on a key in the memtable.
  //
  // When a merge operation is added to the memtable and the maximum number of
  // successive merges is reached, the value of the key will be calculated and
  // inserted into the memtable instead of the merge operation. This will
  // ensure that there are never more than max_successive_merges merge
  // operations in the memtable.
  //
  // Default: 0 (disabled)
  //
  // Dynamically changeable through SetOptions() API
  size_t max_successive_merges;

  // The number of partial merge operands to accumulate before partial
  // merge will be performed. Partial merge will not be called
  // if the list of values to merge is less than min_partial_merge_operands.
  //
  // If min_partial_merge_operands < 2, then it will be treated as 2.
  //
  // Default: 2
  uint32_t min_partial_merge_operands;

  // This flag specifies that the implementation should optimize the filters
  // mainly for cases where keys are found rather than also optimize for keys
  // missed. This would be used in cases where the application knows that
  // there are very few misses or the performance in the case of misses is not
  // important.
  //
  // For now, this flag allows us to not store filters for the last level i.e
  // the largest level which contains data of the LSM store. For keys which
  // are hits, the filters in this level are not useful because we will search
  // for the data anyway. NOTE: the filters in other levels are still useful
  // even for key hit because they tell us whether to look in that level or go
  // to the higher level.
  //
  // Default: false
  bool optimize_filters_for_hits;

  // After writing every SST file, reopen it and read all the keys.
  // Default: false
  bool paranoid_file_checks;

  // Measure IO stats in compactions, if true.
  // Default: false
  bool compaction_measure_io_stats;

  // Create ColumnFamilyOptions with default values for all fields
  ColumnFamilyOptions();
  // Create ColumnFamilyOptions from Options
  explicit ColumnFamilyOptions(const Options& options);

  void Dump(Logger* log) const;
};

struct DBOptions {
  // Some functions that make it easier to optimize RocksDB

#ifndef ROCKSDB_LITE
  // By default, RocksDB uses only one background thread for flush and
  // compaction. Calling this function will set it up such that total of
  // `total_threads` is used. Good value for `total_threads` is the number of
  // cores. You almost definitely want to call this function if your system is
  // bottlenecked by RocksDB.
  DBOptions* IncreaseParallelism(int total_threads = 16);
#endif  // ROCKSDB_LITE

  // If true, the database will be created if it is missing.
  // Default: false
  bool create_if_missing;

  // If true, missing column families will be automatically created.
  // Default: false
  bool create_missing_column_families;

  // If true, an error is raised if the database already exists.
  // Default: false
  bool error_if_exists;

  // If true, RocksDB will aggressively check consistency of the data.
  // Also, if any of the  writes to the database fails (Put, Delete, Merge,
  // Write), the database will switch to read-only mode and fail all other
  // Write operations.
  // In most cases you want this to be set to true.
  // Default: true
  bool paranoid_checks;

  // Use the specified object to interact with the environment,
  // e.g. to read/write files, schedule background work, etc.
  // Default: Env::Default()
  Env* env;

  // Use to control write rate of flush and compaction. Flush has higher
  // priority than compaction. Rate limiting is disabled if nullptr.
  // If rate limiter is enabled, bytes_per_sync is set to 1MB by default.
  // Default: nullptr
  std::shared_ptr<RateLimiter> rate_limiter;

  // Use to control files deletion rate, can be used among multiple
  // RocksDB instances. delete_scheduler is only used to delete table files that
  // need to be deleted from the first db_path (db_name if db_paths is empty),
  // other files types and other db_paths wont be affected by delete_scheduler.
  // Default: nullptr (disabled)
  std::shared_ptr<DeleteScheduler> delete_scheduler;

  // Any internal progress/error information generated by the db will
  // be written to info_log if it is non-nullptr, or to a file stored
  // in the same directory as the DB contents if info_log is nullptr.
  // Default: nullptr
  std::shared_ptr<Logger> info_log;

  InfoLogLevel info_log_level;

  // Number of open files that can be used by the DB.  You may need to
  // increase this if your database has a large working set. Value -1 means
  // files opened are always kept open. You can estimate number of files based
  // on target_file_size_base and target_file_size_multiplier for level-based
  // compaction. For universal-style compaction, you can usually set it to -1.
  // Default: 5000 or ulimit value of max open files (whichever is smaller)
  int max_open_files;

  // If max_open_files is -1, DB will open all files on DB::Open(). You can
  // use this option to increase the number of threads used to open the files.
  // Default: 1
  int max_file_opening_threads;

  // Once write-ahead logs exceed this size, we will start forcing the flush of
  // column families whose memtables are backed by the oldest live WAL file
  // (i.e. the ones that are causing all the space amplification). If set to 0
  // (default), we will dynamically choose the WAL size limit to be
  // [sum of all write_buffer_size * max_write_buffer_number] * 4
  // Default: 0
  uint64_t max_total_wal_size;

  // If non-null, then we should collect metrics about database operations
  // Statistics objects should not be shared between DB instances as
  // it does not use any locks to prevent concurrent updates.
  std::shared_ptr<Statistics> statistics;

  // If true, then the contents of manifest and data files are not synced
  // to stable storage. Their contents remain in the OS buffers till the
  // OS decides to flush them. This option is good for bulk-loading
  // of data. Once the bulk-loading is complete, please issue a
  // sync to the OS to flush all dirty buffesrs to stable storage.
  // Default: false
  bool disableDataSync;

  // If true, then every store to stable storage will issue a fsync.
  // If false, then every store to stable storage will issue a fdatasync.
  // This parameter should be set to true while storing data to
  // filesystem like ext3 that can lose files after a reboot.
  // Default: false
  bool use_fsync;

  // A list of paths where SST files can be put into, with its target size.
  // Newer data is placed into paths specified earlier in the vector while
  // older data gradually moves to paths specified later in the vector.
  //
  // For example, you have a flash device with 10GB allocated for the DB,
  // as well as a hard drive of 2TB, you should config it to be:
  //   [{"/flash_path", 10GB}, {"/hard_drive", 2TB}]
  //
  // The system will try to guarantee data under each path is close to but
  // not larger than the target size. But current and future file sizes used
  // by determining where to place a file are based on best-effort estimation,
  // which means there is a chance that the actual size under the directory
  // is slightly more than target size under some workloads. User should give
  // some buffer room for those cases.
  //
  // If none of the paths has sufficient room to place a file, the file will
  // be placed to the last path anyway, despite to the target size.
  //
  // Placing newer data to ealier paths is also best-efforts. User should
  // expect user files to be placed in higher levels in some extreme cases.
  //
  // If left empty, only one path will be used, which is db_name passed when
  // opening the DB.
  // Default: empty
  std::vector<DbPath> db_paths;

  // This specifies the info LOG dir.
  // If it is empty, the log files will be in the same dir as data.
  // If it is non empty, the log files will be in the specified dir,
  // and the db data dir's absolute path will be used as the log file
  // name's prefix.
  std::string db_log_dir;

  // This specifies the absolute dir path for write-ahead logs (WAL).
  // If it is empty, the log files will be in the same dir as data,
  //   dbname is used as the data dir by default
  // If it is non empty, the log files will be in kept the specified dir.
  // When destroying the db,
  //   all log files in wal_dir and the dir itself is deleted
  std::string wal_dir;

  // The periodicity when obsolete files get deleted. The default
  // value is 6 hours. The files that get out of scope by compaction
  // process will still get automatically delete on every compaction,
  // regardless of this setting
  uint64_t delete_obsolete_files_period_micros;

  // Maximum number of concurrent background compaction jobs, submitted to
  // the default LOW priority thread pool.
  // If you're increasing this, also consider increasing number of threads in
  // LOW priority thread pool. For more information, see
  // Env::SetBackgroundThreads
  // Default: 1
  int max_background_compactions;

  // This value represents the maximum number of threads that will
  // concurrently perform a compaction job by breaking it into multiple,
  // smaller ones that are run simultaneously.
  // Default: 1 (i.e. no subcompactions)
  uint32_t max_subcompactions;

  // Maximum number of concurrent background memtable flush jobs, submitted to
  // the HIGH priority thread pool.
  //
  // By default, all background jobs (major compaction and memtable flush) go
  // to the LOW priority pool. If this option is set to a positive number,
  // memtable flush jobs will be submitted to the HIGH priority pool.
  // It is important when the same Env is shared by multiple db instances.
  // Without a separate pool, long running major compaction jobs could
  // potentially block memtable flush jobs of other db instances, leading to
  // unnecessary Put stalls.
  //
  // If you're increasing this, also consider increasing number of threads in
  // HIGH priority thread pool. For more information, see
  // Env::SetBackgroundThreads
  // Default: 1
  int max_background_flushes;

  // Specify the maximal size of the info log file. If the log file
  // is larger than `max_log_file_size`, a new info log file will
  // be created.
  // If max_log_file_size == 0, all logs will be written to one
  // log file.
  size_t max_log_file_size;

  // Time for the info log file to roll (in seconds).
  // If specified with non-zero value, log file will be rolled
  // if it has been active longer than `log_file_time_to_roll`.
  // Default: 0 (disabled)
  size_t log_file_time_to_roll;

  // Maximal info log files to be kept.
  // Default: 1000
  size_t keep_log_file_num;

  // manifest file is rolled over on reaching this limit.
  // The older manifest file be deleted.
  // The default value is MAX_INT so that roll-over does not take place.
  uint64_t max_manifest_file_size;

  // Number of shards used for table cache.
  int table_cache_numshardbits;

  // DEPRECATED
  // int table_cache_remove_scan_count_limit;

  // The following two fields affect how archived logs will be deleted.
  // 1. If both set to 0, logs will be deleted asap and will not get into
  //    the archive.
  // 2. If WAL_ttl_seconds is 0 and WAL_size_limit_MB is not 0,
  //    WAL files will be checked every 10 min and if total size is greater
  //    then WAL_size_limit_MB, they will be deleted starting with the
  //    earliest until size_limit is met. All empty files will be deleted.
  // 3. If WAL_ttl_seconds is not 0 and WAL_size_limit_MB is 0, then
  //    WAL files will be checked every WAL_ttl_secondsi / 2 and those that
  //    are older than WAL_ttl_seconds will be deleted.
  // 4. If both are not 0, WAL files will be checked every 10 min and both
  //    checks will be performed with ttl being first.
  uint64_t WAL_ttl_seconds;
  uint64_t WAL_size_limit_MB;

  // Number of bytes to preallocate (via fallocate) the manifest
  // files.  Default is 4mb, which is reasonable to reduce random IO
  // as well as prevent overallocation for mounts that preallocate
  // large amounts of data (such as xfs's allocsize option).
  size_t manifest_preallocation_size;

  // Data being read from file storage may be buffered in the OS
  // Default: true
  bool allow_os_buffer;

  // Allow the OS to mmap file for reading sst tables. Default: false
  bool allow_mmap_reads;

  // Allow the OS to mmap file for writing.
  // DB::SyncWAL() only works if this is set to false.
  // Default: false
  bool allow_mmap_writes;

  // If false, fallocate() calls are bypassed
  bool allow_fallocate;

  // Disable child process inherit open files. Default: true
  bool is_fd_close_on_exec;

  // DEPRECATED -- this options is no longer used
  bool skip_log_error_on_recovery;

  // if not zero, dump rocksdb.stats to LOG every stats_dump_period_sec
  // Default: 600 (10 min)
  unsigned int stats_dump_period_sec;

  // If set true, will hint the underlying file system that the file
  // access pattern is random, when a sst file is opened.
  // Default: true
  bool advise_random_on_open;

  // Amount of data to build up in memtables across all column
  // families before writing to disk.
  //
  // This is distinct from write_buffer_size, which enforces a limit
  // for a single memtable.
  //
  // This feature is disabled by default. Specify a non-zero value
  // to enable it.
  //
  // Default: 0 (disabled)
  size_t db_write_buffer_size;

  // Specify the file access pattern once a compaction is started.
  // It will be applied to all input files of a compaction.
  // Default: NORMAL
  enum AccessHint {
      NONE,
      NORMAL,
      SEQUENTIAL,
      WILLNEED
  };
  AccessHint access_hint_on_compaction_start;

  // If true, always create a new file descriptor and new table reader
  // for compaction inputs. Turn this parameter on may introduce extra
  // memory usage in the table reader, if it allocates extra memory
  // for indexes. This will allow file descriptor prefetch options
  // to be set for compaction input files and not to impact file
  // descriptors for the same file used by user queries.
  // Suggest to enable BlockBasedTableOptions.cache_index_and_filter_blocks
  // for this mode if using block-based table.
  //
  // Default: false
  bool new_table_reader_for_compaction_inputs;

  // If non-zero, we perform bigger reads when doing compaction. If you're
  // running RocksDB on spinning disks, you should set this to at least 2MB.
  // That way RocksDB's compaction is doing sequential instead of random reads.
  //
  // When non-zero, we also force new_table_reader_for_compaction_inputs to
  // true.
  //
  // Default: 0
  size_t compaction_readahead_size;

  // Use adaptive mutex, which spins in the user space before resorting
  // to kernel. This could reduce context switch when the mutex is not
  // heavily contended. However, if the mutex is hot, we could end up
  // wasting spin time.
  // Default: false
  bool use_adaptive_mutex;

  // Create DBOptions with default values for all fields
  DBOptions();
  // Create DBOptions from Options
  explicit DBOptions(const Options& options);

  void Dump(Logger* log) const;

  // Allows OS to incrementally sync files to disk while they are being
  // written, asynchronously, in the background. This operation can be used
  // to smooth out write I/Os over time. Users shouldn't reply on it for
  // persistency guarantee.
  // Issue one request for every bytes_per_sync written. 0 turns it off.
  // Default: 0
  //
  // You may consider using rate_limiter to regulate write rate to device.
  // When rate limiter is enabled, it automatically enables bytes_per_sync
  // to 1MB.
  //
  // This option applies to table files
  uint64_t bytes_per_sync;

  // Same as bytes_per_sync, but applies to WAL files
  // Default: 0, turned off
  uint64_t wal_bytes_per_sync;

  // A vector of EventListeners which call-back functions will be called
  // when specific RocksDB event happens.
  std::vector<std::shared_ptr<EventListener>> listeners;

  // If true, then the status of the threads involved in this DB will
  // be tracked and available via GetThreadList() API.
  //
  // Default: false
  bool enable_thread_tracking;

  // The limited write rate to DB if soft_rate_limit or
  // level0_slowdown_writes_trigger is triggered. It is calculated using
  // size of user write requests before compression.
  // Unit: byte per second.
  //
  // Default: 1MB/s
  uint64_t delayed_write_rate;

  // If true, then DB::Open() will not update the statistics used to optimize
  // compaction decision by loading table properties from many files.
  // Turning off this feature will improve DBOpen time especially in
  // disk environment.
  //
  // Default: false
  bool skip_stats_update_on_db_open;

  // Recovery mode to control the consistency while replaying WAL
  // Default: kTolerateCorruptedTailRecords
  WALRecoveryMode wal_recovery_mode;

  // A global cache for table-level rows.
  // Default: nullptr (disabled)
  // Not supported in ROCKSDB_LITE mode!
  std::shared_ptr<Cache> row_cache;
};

// Options to control the behavior of a database (passed to DB::Open)
struct Options : public DBOptions, public ColumnFamilyOptions {
  // Create an Options object with default values for all fields.
  Options() : DBOptions(), ColumnFamilyOptions() {}

  Options(const DBOptions& db_options,
          const ColumnFamilyOptions& column_family_options)
      : DBOptions(db_options), ColumnFamilyOptions(column_family_options) {}

  void Dump(Logger* log) const;

  void DumpCFOptions(Logger* log) const;

  // Set appropriate parameters for bulk loading.
  // The reason that this is a function that returns "this" instead of a
  // constructor is to enable chaining of multiple similar calls in the future.
  //

  // All data will be in level 0 without any automatic compaction.
  // It's recommended to manually call CompactRange(NULL, NULL) before reading
  // from the database, because otherwise the read can be very slow.
  Options* PrepareForBulkLoad();
};

//
// An application can issue a read request (via Get/Iterators) and specify
// if that read should process data that ALREADY resides on a specified cache
// level. For example, if an application specifies kBlockCacheTier then the
// Get call will process data that is already processed in the memtable or
// the block cache. It will not page in data from the OS cache or data that
// resides in storage.
enum ReadTier {
  kReadAllTier = 0x0,    // data in memtable, block cache, OS cache or storage
  kBlockCacheTier = 0x1  // data in memtable or block cache
};

// Options that control read operations
struct ReadOptions {
  // If true, all data read from underlying storage will be
  // verified against corresponding checksums.
  // Default: true
  bool verify_checksums;

  // Should the "data block"/"index block"/"filter block" read for this
  // iteration be cached in memory?
  // Callers may wish to set this field to false for bulk scans.
  // Default: true
  bool fill_cache;

  // If this option is set and memtable implementation allows, Seek
  // might only return keys with the same prefix as the seek-key
  //
  // ! DEPRECATED: prefix_seek is on by default when prefix_extractor
  // is configured
  // bool prefix_seek;

  // If "snapshot" is non-nullptr, read as of the supplied snapshot
  // (which must belong to the DB that is being read and which must
  // not have been released).  If "snapshot" is nullptr, use an impliicit
  // snapshot of the state at the beginning of this read operation.
  // Default: nullptr
  const Snapshot* snapshot;

  // If "prefix" is non-nullptr, and ReadOptions is being passed to
  // db.NewIterator, only return results when the key begins with this
  // prefix.  This field is ignored by other calls (e.g., Get).
  // Options.prefix_extractor must also be set, and
  // prefix_extractor.InRange(prefix) must be true.  The iterator
  // returned by NewIterator when this option is set will behave just
  // as if the underlying store did not contain any non-matching keys,
  // with two exceptions.  Seek() only accepts keys starting with the
  // prefix, and SeekToLast() is not supported.  prefix filter with this
  // option will sometimes reduce the number of read IOPs.
  // Default: nullptr
  //
  // ! DEPRECATED
  // const Slice* prefix;

  // "iterate_upper_bound" defines the extent upto which the forward iterator
  // can returns entries. Once the bound is reached, Valid() will be false.
  // "iterate_upper_bound" is exclusive ie the bound value is
  // not a valid entry.  If iterator_extractor is not null, the Seek target
  // and iterator_upper_bound need to have the same prefix.
  // This is because ordering is not guaranteed outside of prefix domain.
  // There is no lower bound on the iterator. If needed, that can be easily
  // implemented
  //
  // Default: nullptr
  const Slice* iterate_upper_bound;

  // Specify if this read request should process data that ALREADY
  // resides on a particular cache. If the required data is not
  // found at the specified cache, then Status::Incomplete is returned.
  // Default: kReadAllTier
  ReadTier read_tier;

  // Specify to create a tailing iterator -- a special iterator that has a
  // view of the complete database (i.e. it can also be used to read newly
  // added data) and is optimized for sequential reads. It will return records
  // that were inserted into the database after the creation of the iterator.
  // Default: false
  // Not supported in ROCKSDB_LITE mode!
  bool tailing;

  // Specify to create a managed iterator -- a special iterator that
  // uses less resources by having the ability to free its underlying
  // resources on request.
  // Default: false
  // Not supported in ROCKSDB_LITE mode!
  bool managed;

  // Enable a total order seek regardless of index format (e.g. hash index)
  // used in the table. Some table format (e.g. plain table) may not support
  // this option.
  bool total_order_seek;

  ReadOptions();
  ReadOptions(bool cksum, bool cache);
};

// Options that control write operations
struct WriteOptions {
  // If true, the write will be flushed from the operating system
  // buffer cache (by calling WritableFile::Sync()) before the write
  // is considered complete.  If this flag is true, writes will be
  // slower.
  //
  // If this flag is false, and the machine crashes, some recent
  // writes may be lost.  Note that if it is just the process that
  // crashes (i.e., the machine does not reboot), no writes will be
  // lost even if sync==false.
  //
  // In other words, a DB write with sync==false has similar
  // crash semantics as the "write()" system call.  A DB write
  // with sync==true has similar crash semantics to a "write()"
  // system call followed by "fdatasync()".
  //
  // Default: false
  bool sync;

  // If true, writes will not first go to the write ahead log,
  // and the write may got lost after a crash.
  bool disableWAL;

  // The option is deprecated. It's not used anymore.
  uint64_t timeout_hint_us;

  // If true and if user is trying to write to column families that don't exist
  // (they were dropped),  ignore the write (don't return an error). If there
  // are multiple writes in a WriteBatch, other writes will succeed.
  // Default: false
  bool ignore_missing_column_families;

  WriteOptions()
      : sync(false),
        disableWAL(false),
        timeout_hint_us(0),
        ignore_missing_column_families(false) {}
};

// Options that control flush operations
struct FlushOptions {
  // If true, the flush will wait until the flush is done.
  // Default: true
  bool wait;

  FlushOptions() : wait(true) {}
};

// Get options based on some guidelines. Now only tune parameter based on
// flush/compaction and fill default parameters for other parameters.
// total_write_buffer_limit: budget for memory spent for mem tables
// read_amplification_threshold: comfortable value of read amplification
// write_amplification_threshold: comfortable value of write amplification.
// target_db_size: estimated total DB size.
extern Options GetOptions(size_t total_write_buffer_limit,
                          int read_amplification_threshold = 8,
                          int write_amplification_threshold = 32,
                          uint64_t target_db_size = 68719476736 /* 64GB */);

// CompactionOptions are used in CompactFiles() call.
struct CompactionOptions {
  // Compaction output compression type
  // Default: snappy
  CompressionType compression;
  // Compaction will create files of size `output_file_size_limit`.
  // Default: MAX, which means that compaction will create a single file
  uint64_t output_file_size_limit;

  CompactionOptions()
      : compression(kSnappyCompression),
        output_file_size_limit(std::numeric_limits<uint64_t>::max()) {}
};

// For level based compaction, we can configure if we want to skip/force
// bottommost level compaction.
enum class BottommostLevelCompaction {
  // Skip bottommost level compaction
  kSkip,
  // Only compact bottommost level if there is a compaction filter
  // This is the default option
  kIfHaveCompactionFilter,
  // Always compact bottommost level
  kForce,
};

// CompactRangeOptions is used by CompactRange() call.
struct CompactRangeOptions {
  // If true, compacted files will be moved to the minimum level capable
  // of holding the data or given level (specified non-negative target_level).
  bool change_level = false;
  // If change_level is true and target_level have non-negative value, compacted
  // files will be moved to target_level.
  int target_level = -1;
  // Compaction outputs will be placed in options.db_paths[target_path_id].
  // Behavior is undefined if target_path_id is out of range.
  uint32_t target_path_id = 0;
  // By default level based compaction will only compact the bottommost level
  // if there is a compaction filter
  BottommostLevelCompaction bottommost_level_compaction =
      BottommostLevelCompaction::kIfHaveCompactionFilter;
};
}  // namespace rocksdb

#endif  // STORAGE_ROCKSDB_INCLUDE_OPTIONS_H_