/usr/include/rheolef/mpi_assembly_begin.h is in librheolef-dev 6.6-1build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 | #ifndef _RHEO_MPI_ASSEMBLY_BEGIN_H
#define _RHEO_MPI_ASSEMBLY_BEGIN_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
///
/// =========================================================================
namespace rheolef {
/*F:
NAME: mpi_assembly_begin -- for array or matrix (@PACKAGE@ @VERSION@)
DESCRIPTION:
Start a dense array or a sparse matrix assembly.
COMPLEXITY:
Assume that stash has indexes in increasing order.
cpu complexity : O(stash.size + nproc)
memory complexity : O(stash.size + nproc)
msg size complexity : O(stash.size + nproc)
When assembling a finite element matrix, the stash.size is at boundaries
of the mesh partition, and stash.size = O(nrow^alpha), where alpha=(d-1)/d
and d=2,3. Using nproc <= O(nrow^alpha) is performant.
NOTE:
The stash may be sorted by increasing nows and column.
Inspirated from Petsc (petsc/src/vec/vec/impls/mpi/pdvec.c), here with
a pre-sorted stash, thanks to the stl::map data structure.
AUTHORS:
LMC-IMAG, 38041 Grenoble cedex 9, France
| Pierre.Saramito@imag.fr
DATE: 23 march 1999
END:
*/
//<mpi_assembly_begin:
template <
class Stash,
class Message,
class InputIterator>
typename Stash::size_type
mpi_assembly_begin (
// input:
const Stash& stash,
InputIterator first_stash_idx, // wrapper in shash
InputIterator last_stash_idx,
const distributor& ownership,
// ouput:
Message& receive, // buffer
Message& send) // buffer
{
typedef typename Stash::size_type size_type;
mpi::communicator comm = ownership.comm();
size_type my_proc = ownership.process();
size_type nproc = ownership.n_process();
distributor::tag_type tag = distributor::get_new_tag();
// ----------------------------------------------------------------
// 1) count the messages contained in stash by process id
// ----------------------------------------------------------------
// assume that stash elements are sorted by increasing stash_idx (e.g. stash = stl::map)
// cpu complexity = O(stash.size + nproc)
// mem complexity = O(stash.size + nproc)
std::vector<size_type> msg_size(nproc, 0);
std::vector<size_type> msg_mark(nproc, 0);
size_type send_nproc = 0;
{
size_type iproc = 0;
size_type i = 0;
for (InputIterator iter_idx = first_stash_idx; iter_idx != last_stash_idx; iter_idx++, i++) {
for (; iproc < nproc; iproc++) {
if (*iter_idx >= ownership[iproc] && *iter_idx < ownership[iproc+1]) {
msg_size [iproc]++;
if (!msg_mark[iproc]) {
msg_mark[iproc] = 1;
send_nproc++;
}
break;
}
}
assert_macro (iproc != nproc, "bad stash data: index "<<*iter_idx<<" out of range [0:"<<ownership[nproc]<<"[");
}
} // end block
// ----------------------------------------------------------------
// 2) avoid to send message to my-proc in counting
// ----------------------------------------------------------------
if (msg_size [my_proc] != 0) {
msg_size [my_proc] = 0;
msg_mark [my_proc] = 0;
send_nproc--;
}
// ----------------------------------------------------------------
// 3) compute number of messages to be send to my_proc
// ----------------------------------------------------------------
// msg complexity : O(nproc) or O(log(nproc)), depending on reduce implementation
std::vector<size_type> work (nproc);
mpi::all_reduce (
comm,
msg_mark.begin().operator->(),
nproc,
work.begin().operator->(),
std::plus<size_type>());
size_type receive_nproc = work [my_proc];
// ----------------------------------------------------------------
// 4) compute messages max size to be send to my_proc
// ----------------------------------------------------------------
// msg complexity : O(nproc) or O(log(nproc)), depending on reduce implementation
mpi::all_reduce (
comm,
msg_size.begin().operator->(),
nproc,
work.begin().operator->(),
mpi::maximum<size_type>());
size_type receive_max_size = work [my_proc];
// ----------------------------------------------------------------
// 5) post receive: exchange the buffer adresses between processes
// ----------------------------------------------------------------
// Each message will consist of ordered pairs (global index,value).
// since we don't know how long each indiidual message is,
// we allocate the largest : receive_nproc*receive_max_size
// potentially, this is a lot of wasted space
// TODO: how to optimize the receive.data buffer ?
// cpu complexity : O(nproc)
// mem complexity : O(nproc*(stash.size/nproc)) = O(stash.size), worst case ?
// msg complexity : O(nproc)
receive.data.resize (receive_nproc*receive_max_size);
for (size_t i_receive = 0; i_receive < receive_nproc; i_receive++) {
mpi::request i_req = comm.irecv (
mpi::any_source,
tag,
receive.data.begin().operator->() + i_receive*receive_max_size,
receive_max_size);
receive.waits.push_back (std::make_pair(i_receive, i_req));
}
// ----------------------------------------------------------------
// 6) copy stash in send buffer
// ----------------------------------------------------------------
// since the stash is sorted by increasing order => simple copy
// cpu complexity : O(stash.size)
// mem complexity : O(stash.size)
send.data.resize (stash.size());
copy (stash.begin(), stash.end(), send.data.begin());
// ---------------------------------------------------------------------------
// 7) do send
// ---------------------------------------------------------------------------
// cpu complexity : O(nproc)
// mem complexity : O(send_nproc) \approx O(nproc), worst case
// msg complexity : O(stash.size)
send.waits.resize(send_nproc);
{
size_type i_send = 0;
size_type i_start = 0;
for (size_type iproc = 0; iproc < nproc; iproc++) {
size_type i_msg_size = msg_size[iproc];
if (i_msg_size == 0) continue;
mpi::request i_req = comm.isend (
iproc,
tag,
send.data.begin().operator->() + i_start,
i_msg_size);
send.waits.push_back(std::make_pair(i_send,i_req));
i_send++;
i_start += i_msg_size;
}
} // end block
return receive_max_size;
}
//>mpi_assembly_begin:
} // namespace rheolef
#endif //_RHEO_MPI_ASSEMBLY_BEGIN_H
|