/usr/include/rheolef/interpolate.h is in librheolef-dev 6.6-1build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 | #ifndef _RHEOLEF_INTERPOLATE_H
#define _RHEOLEF_INTERPOLATE_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
///
/// =========================================================================
//
// interpolation
//
#include "rheolef/field.h"
#include "rheolef/field_nonlinear_expr.h"
namespace rheolef {
// --------------------------------------------------------------------------
// interpolate a general nonlinear expression
// --------------------------------------------------------------------------
// function template partial specialization is not allowed --> class-function
template<class T, class M, class Expr, class Result, class Status = typename details::is_equal<Result,typename Expr::value_type>::type>
struct interpolate_internal_check {
field_basic<T,M>
operator() (
const space_basic<T,M>& Xh,
const field_nonlinear_expr<Expr>& expr) const
{
trace_macro ("Expr="<<pretty_typename_macro(Expr));
trace_macro ("Result="<<typename_macro(Result));
trace_macro ("Status="<<typename_macro(Status));
trace_macro ("Expr::value_type="<<typename_macro(typename Expr::value_type));
fatal_macro ("invalid type resolution");
return field_basic<T,M>();
}};
// scalar-valued result field
template<class T, class M, class Expr>
struct interpolate_internal_check<T,M,Expr,T,mpl::true_> {
field_basic<T,M>
operator() (
const space_basic<T,M>& Xh,
const field_nonlinear_expr<Expr>& expr) const
{
typedef typename field_basic<T,M>::size_type size_type;
bool is_homogeneous = expr.initialize (Xh);
expr.template valued_check<T>();
trace_macro ("is_homogeneous: " << is_homogeneous);
const geo_basic<T,M>& omega = Xh.get_geo();
field_basic<T,M> uh (Xh, std::numeric_limits<T>::max());
typename field_basic<T,M>::iterator random_iter_uh = uh.begin_dof();
std::vector<size_type> dis_idof;
distributor ownership = Xh.ownership();
size_type first_dis_idof = ownership.first_index();
check_macro (Xh.valued_tag() == space_constant::scalar,
"interpolate: invalid "<<Xh.valued()<<"-valued space and scalar function");
std::vector<T> value;
for (typename geo_basic<T,M>::const_iterator
iter_ie = omega.begin(),
last_ie = omega.end(); iter_ie != last_ie; ++iter_ie) {
const geo_element& K = *iter_ie;
expr.evaluate (K, value);
Xh.dis_idof (K, dis_idof);
for (size_type loc_idof = 0, loc_ndof = dis_idof.size(); loc_idof < loc_ndof; ++loc_idof) {
if (! ownership.is_owned (dis_idof [loc_idof])) continue;
size_type idof = dis_idof [loc_idof] - first_dis_idof;
random_iter_uh [idof] = value [loc_idof];
}
}
return uh;
}};
// vector-valued case
template<class T, class M, class Expr>
struct interpolate_internal_check<T,M,Expr,point_basic<T>,mpl::true_> {
field_basic<T,M>
operator() (
const space_basic<T,M>& Xh,
const field_nonlinear_expr<Expr>& expr) const
{
typedef typename field_basic<T,M>::size_type size_type;
bool is_homogeneous = expr.initialize (Xh);
expr.template valued_check<point_basic<T> >();
const geo_basic<T,M>& omega = Xh.get_geo();
field_basic<T,M> uh (Xh, std::numeric_limits<T>::max());
std::vector<size_type> dis_idof;
distributor ownership = Xh.ownership();
size_type first_dis_idof = ownership.first_index();
typename field_basic<T,M>::iterator random_iter_uh = uh.begin_dof();
check_macro (Xh.valued_tag() == space_constant::vector,
"interpolate: invalid "<<Xh.valued()<<"-valued space and vector function");
std::vector<point_basic<T> > value;
size_type dim = Xh.get_geo().dimension();
size_type n_comp = dim;
for (typename geo_basic<T,M>::const_iterator
iter_ie = omega.begin(),
last_ie = omega.end(); iter_ie != last_ie; ++iter_ie) {
const geo_element& K = *iter_ie;
expr.evaluate (K, value);
Xh.dis_idof (K, dis_idof);
size_type dis_ndof = dis_idof.size();
size_type loc_comp_ndof = dis_ndof/n_comp;
for (size_type loc_comp_idof = 0; loc_comp_idof < loc_comp_ndof; ++loc_comp_idof) {
for (size_type i_comp = 0; i_comp < n_comp; ++i_comp) {
size_type loc_idof = loc_comp_idof + i_comp*loc_comp_ndof;
if (! ownership.is_owned (dis_idof [loc_idof])) continue;
size_type idof = dis_idof [loc_idof] - first_dis_idof;
random_iter_uh [idof] = value [loc_comp_idof][i_comp];
}
}
}
return uh;
}};
// tensor-valued case
template<class T, class M, class Expr>
struct interpolate_internal_check<T,M,Expr,tensor_basic<T>,mpl::true_> {
field_basic<T,M>
operator() (
const space_basic<T,M>& Xh,
const field_nonlinear_expr<Expr>& expr) const
{
typedef typename field_basic<T,M>::size_type size_type;
bool is_homogeneous = expr.initialize (Xh);
expr.template valued_check<tensor_basic<T> >();
const geo_basic<T,M>& omega = Xh.get_geo();
field_basic<T,M> uh (Xh, std::numeric_limits<T>::max());
std::vector<size_type> dis_idof;
distributor ownership = Xh.ownership();
size_type first_dis_idof = ownership.first_index();
typename field_basic<T,M>::iterator random_iter_uh = uh.begin_dof();
check_macro (Xh.valued_tag() == space_constant::tensor ||
Xh.valued_tag() == space_constant::unsymmetric_tensor,
"interpolate: invalid "<<Xh.valued()<<"-valued space and vector function");
std::vector<tensor_basic<T> > value;
size_type dim = Xh.get_geo().dimension();
space_constant::coordinate_type sys_coord = uh.get_geo().coordinate_system();
size_type n_comp = space_constant::n_component (space_constant::tensor, dim, sys_coord);
for (typename geo_basic<T,M>::const_iterator
iter_ie = omega.begin(),
last_ie = omega.end(); iter_ie != last_ie; ++iter_ie) {
const geo_element& K = *iter_ie;
expr.evaluate (K, value);
Xh.dis_idof (K, dis_idof);
size_type loc_ndof = dis_idof.size();
size_type loc_comp_ndof = loc_ndof/n_comp;
for (size_type loc_comp_idof = 0; loc_comp_idof < loc_comp_ndof; ++loc_comp_idof) {
for (size_type ij_comp = 0; ij_comp < n_comp; ++ij_comp) {
size_type loc_idof = loc_comp_idof + ij_comp*loc_comp_ndof;
if (! ownership.is_owned (dis_idof [loc_idof])) continue;
size_type idof = dis_idof [loc_idof] - first_dis_idof;
std::pair<size_type,size_type> ij
= space_constant::tensor_subscript (space_constant::tensor, sys_coord, ij_comp);
random_iter_uh [idof] = value [loc_comp_idof](ij.first, ij.second);
}
}
}
return uh;
}};
template<class T, class M, class Expr, class Status>
struct interpolate_internal_check<T,M,Expr,undeterminated_basic<T>,Status> {
field_basic<T,M>
operator() (
const space_basic<T,M>& Xh,
const field_nonlinear_expr<Expr>& expr) const
{
switch (expr.valued_tag()) {
case space_constant::scalar: {
interpolate_internal_check<T,M,Expr,T,mpl::true_> eval;
return eval (Xh, expr);
}
case space_constant::vector: {
interpolate_internal_check<T,M,Expr,point_basic<T>,mpl::true_> eval;
return eval (Xh, expr);
}
case space_constant::tensor:
case space_constant::unsymmetric_tensor: {
interpolate_internal_check<T,M,Expr,tensor_basic<T>,mpl::true_> eval;
return eval (Xh, expr);
}
default:
warning_macro ("Expr="<<pretty_typename_macro(Expr));
warning_macro ("Status="<<typename_macro(Status));
error_macro ("unexpected `"
<< space_constant::valued_name (expr.valued_tag())
<< "' valued expression");
return field_basic<T,M>();
}
}};
template<class T, class M, class Expr, class Result>
field_basic<T,M>
interpolate_internal (
const space_basic<T,M>& Xh,
const field_nonlinear_expr<Expr>& expr)
{
interpolate_internal_check<T,M,Expr,Result> eval;
return eval (Xh,expr);
}
// undeterminated-valued case
template<class T, class M, class Expr>
field_basic<T,M>
interpolate (const space_basic<T,M>& Xh, const field_nonlinear_expr<Expr>& expr)
{
typedef typename Expr::value_type result_t;
return interpolate_internal<T,M,Expr,result_t> (Xh, expr);
}
// --------------------------------------------------------------------------
// implementation details of the interpolate() function
// --------------------------------------------------------------------------
namespace details {
template <class T, class M, class Function>
field_basic<T,M>
interpolate_tag (const space_basic<T,M>& Xh, const Function& f, const T&)
{
check_macro (Xh.valued_tag() == space_constant::scalar,
"interpolate: invalid "<<Xh.valued()<<"-valued " <<Xh.stamp()
<< " space and scalar function");
typedef typename space_basic<T,M>::size_type size_type;
field_basic<T,M> u (Xh, std::numeric_limits<T>::max());
for (size_type idof = 0, ndof = Xh.ndof(); idof < ndof; idof++) {
u.dof (idof) = Xh.momentum (f, idof);
}
return u;
}
template <class T, class M, class Function>
field_basic<T,M>
interpolate_tag (const space_basic<T,M>& Xh, const Function& f, const point_basic<T>&)
{
check_macro (Xh.valued_tag() == space_constant::vector,
"interpolate: invalid "<<Xh.valued()<<"-valued space and vector function");
typedef typename space_basic<T,M>::size_type size_type;
field_basic<T,M> u (Xh, std::numeric_limits<T>::max());
size_type n_comp = Xh.get_geo().dimension();
point_basic<T> value;
for (size_type comp_idof = 0, comp_ndof = Xh.ndof()/n_comp; comp_idof < comp_ndof; comp_idof++) {
value = Xh.vector_momentum (f, comp_idof);
for (size_type i_comp = 0; i_comp < n_comp; i_comp++) {
size_type idof = comp_idof + i_comp*comp_ndof;
u.dof (idof) = value [i_comp];
}
}
return u;
}
template <class T, class M, class Function>
field_basic<T,M>
interpolate_tag (const space_basic<T,M>& Xh, const Function& f, const tensor_basic<T>&)
{
check_macro (Xh.valued_tag() == space_constant::tensor,
"interpolate: invalid "<<Xh.valued()<<"-valued space and tensor function");
typedef typename space_basic<T,M>::size_type size_type;
field_basic<T,M> u (Xh, std::numeric_limits<T>::max());
size_type d = Xh.get_geo().dimension();
space_constant::coordinate_type sys_coord = Xh.get_geo().coordinate_system();
size_type n_comp = space_constant::n_component (space_constant::tensor, d, sys_coord);
tensor_basic<T> value;
for (size_type comp_idof = 0, comp_ndof = Xh.ndof()/n_comp; comp_idof < comp_ndof; comp_idof++) {
value = Xh.tensor_momentum (f, comp_idof);
for (size_type ij_comp = 0; ij_comp < n_comp; ij_comp++) {
size_type idof = comp_idof + ij_comp*comp_ndof;
std::pair<size_type,size_type> ij
= space_constant::tensor_subscript (space_constant::tensor, sys_coord, ij_comp);
u.dof (idof) = value (ij.first, ij.second);
}
}
return u;
}
} // namespace details
// --------------------------------------------------------------------------
// interface of the interpolate() function
// --------------------------------------------------------------------------
/*Class:interpolate
NAME: @code{interpolate} - Lagrange interpolation of a function
@findex interpolate
@clindex space
@clindex field
DESCRIPTION:
The function @code{interpolation} implements the
Lagrange interpolation of a function or a class-function.
SYNOPSYS:
template <class Function>
field interpolate (const space& Xh, const Function& f);
EXAMPLE:
@noindent
The following code compute the Lagrange interpolation
@code{pi_h_u} of u(x).
@example
Float u(const point& x);
...
geo omega("square");
space Xh (omega, "P1");
field pi_h_u = interpolate (Xh, u);
@end example
ADVANCED EXAMPLE:
It is possible the replace the function @code{u}
by a variable of the @code{field} type that represents
a picewise polynomial function: this invocation allows
the reinterpolation of a field on another mesh or with
another approximation.
@example
geo omega2 ("square2");
space X2h (omega2, "P1");
field uh2 = interpolate (X2h, pi_h_u);
@end example
End: */
//<interpolate:
// TODO: un peu general... utiliser des specialisation des classes-fonctions:
// function<Float(const point&)>
// function<point(const point&)>
// function<tensor(const point&)>
template <class T, class M, class Function>
inline
field_basic<T,M>
interpolate (const space_basic<T,M>& Xh, const Function& f)
//>interpolate:
{
typedef typename Function::result_type result_t;
return details::interpolate_tag (Xh, f, result_t());
}
// specialization for scalar-valued functions:
template <class T, class M>
inline
field_basic<T,M>
interpolate (const space_basic<T,M>& Xh, T (*f)(const point_basic<T>&))
{
return details::interpolate_tag (Xh, f, T());
}
// specialization for tensor-valued functions:
template <class T, class M>
inline
field_basic<T,M>
interpolate (const space_basic<T,M>& Xh, tensor_basic<T> (*f)(const point_basic<T>&))
{
return details::interpolate_tag (Xh, f, tensor_basic<T>());
}
// specialization for vector-valued functions:
template <class T, class M>
inline
field_basic<T,M>
interpolate (const space_basic<T,M>& Xh, point_basic<T> (*f)(const point_basic<T>&))
{
return details::interpolate_tag (Xh, f, point_basic<T>());
}
// specialization for re-interpoltion of fields (change of mesh, of approx, ect):
template<class T, class M>
field_basic<T,M>
interpolate (const space_basic<T,M>& X2h, const field_basic<T,M>& u1h);
}// namespace rheolef
#endif // _RHEOLEF_INTERPOLATE_H
|