This file is indexed.

/usr/include/rheolef/integrate.h is in librheolef-dev 6.6-1build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
#ifndef _RHEO_INTEGRATE_H
#define _RHEO_INTEGRATE_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
/// 
/// =========================================================================
#include "rheolef/test.h"
#include "rheolef/field_vf_expr.h"
#include "rheolef/form_vf_expr.h"
#include "rheolef/form_option_type.h"
#include "rheolef/integrate_numeric.icc"
#include "rheolef/riesz.h" // for details::f_constant
namespace rheolef { 

/*Class:integrate
NAME: @code{integrate} - integrate a function or an expression
@findex  integrate
DESCRIPTION:
  Integrate an expression over a domain by using a quadrature formulae.
  There are three main usages of the integrate function, depending upon the 
  type of the expression.
  (i) When the expression is a numerical one, it leads to a numerical value.
  (ii) When the expression involves a symbolic test-function @pxref{test class},
  the result is a linear form, represented by the @code{field} class. 
  (iii) When the expression involves both  symbolic trial- and test-functions @pxref{test class},
  the result is a bilinear form, represented by the @code{field} class. 
SYNOPSYS:
@example
 template <class T, class M, class Expr>
 T integrate (const geo_basic<T,M>& omega, Expr expr,
   quadrature_option_type qopt)

 template <class T, class M, class Expr>
 field integrate (const geo_basic<T,M>& omega, VFExpr expr,
   quadrature_option_type qopt)

 template <class T, class M, class Expr>
 form integrate (const geo_basic<T,M>& omega, VFExpr expr,
   form_option_type fopt)
@end example
EXAMPLE:
@noindent
@example
  Float f (const point& x);
  ...
  quadrature_option_type qopt;
  Float value = integrate (omega, f, qopt);
  field lh = integrate (omega, f*v, qopt);
@end example
  The last argument specifies the quadrature formulae used
  for the computation of the integral.
  The expression can be any function, classs-function or 
  any linear or nonlinear field expression @pxref{field class}.
DEFAULT ARGUMENTS:
  In the case of a linear form, the domain is optional: by default it is
  the full domain definition of the test function.
@example
  field l1h = integrate (f*v, qopt);
@end example
  When the integration is perfomed on a subdomain, this subdomain
  simply replace the first argument and a domain name could also be used:
@example
  field l2h = integrate (omega["boundary"], f*v, qopt);
  field l3h = integrate ("boundary", f*v, qopt);
@end example
  The quadrature formulae is required, except when a test and/or trial
  function is provided in the expression to integrate.
  In that case, the quadrature formulae is deduced from the space
  containing the test (or trial) function. 
  When a test function is suppied, let k be its polynomial degree.
  Then the default quadrature is
  choosen to be exact at least for 2*k+1 polynoms.
  When both a test and trial functions are suppied, let k1 and k2 be their polynomial degrees.
  Then the default quadrature is
  choosen to be exact at least for k1+k2+1 polynoms.
  Also, when the expression is a constant, the quadrature function is optional:
  in that case, the constant is also optional and the following call:
@example
  Float meas = integrate (omega);
@end example
  is valid and returns the measure of the domain.
End: */

// ----------------------------------------------
// variational integration
// ----------------------------------------------
template <class T, class M>
inline
field_basic<T,M>
integrate (const geo_basic<T,M>& domain, const test_basic<T,M,details::vf_tag_01>& expr,
	const quadrature_option_type& qopt = quadrature_option_type())
{
  field_basic<T,M> lh;
  lh.assembly (domain, expr, qopt);
  return lh;
}
template <class T, class M, class Expr>
inline
field_basic<T,M>
integrate (const geo_basic<T,M>& domain, const field_vf_expr<Expr>& expr,
	const quadrature_option_type& qopt = quadrature_option_type())
{
  field_basic<T,M> lh;
  lh.assembly (domain, expr, qopt);
  return lh;
}
template <class T, class M, class Expr>
inline
form_basic<T, M>
integrate (const geo_basic<T,M>& domain, const form_vf_expr<Expr>& expr,
	const form_option_type& fopt = form_option_type())
{
  form_basic<T,M> a;
  a.assembly (domain, expr, fopt);
  return a;
}
// ----------------------------------------------
// variational integration: missing domain
// ----------------------------------------------
template <class T, class M>
inline
field_basic<T,M>
integrate (const test_basic<T,M,details::vf_tag_01>& expr,
	const quadrature_option_type& qopt = quadrature_option_type())
{
  field_basic<T,M> lh;
  lh.assembly (expr.get_vf_space().get_geo(), expr, qopt);
  return lh;
}
template <class Expr>
inline
field_basic<typename field_vf_expr<Expr>::scalar_type, typename field_vf_expr<Expr>::memory_type>
integrate (const field_vf_expr<Expr>& expr,
	const quadrature_option_type& qopt = quadrature_option_type())
{
  typedef typename field_vf_expr<Expr>::scalar_type T;
  typedef typename field_vf_expr<Expr>::memory_type M;
  field_basic<T,M> lh;
  lh.assembly (expr.get_vf_space().get_geo(), expr, qopt);
  return lh;
}
template <class Expr>
inline
form_basic<typename form_vf_expr<Expr>::scalar_type, typename form_vf_expr<Expr>::memory_type>
integrate (const form_vf_expr<Expr>& expr,
	const form_option_type& fopt = form_option_type())
{
  // TODO: prendre le min de expr.get_test_space().get_geo() expr.get_trial_space().get_geo()
  typedef typename field_vf_expr<Expr>::scalar_type T;
  typedef typename field_vf_expr<Expr>::memory_type M;
  form_basic<T,M> a;
  a.assembly (expr.get_test_space().get_geo(), expr, fopt);
  return a;
}
// ----------------------------------------------
// variational integration: subdomain by its name
// ----------------------------------------------
template <class T, class M>
inline
field_basic<T,M>
integrate (const std::string& domname, const test_basic<T,M,details::vf_tag_01>& expr,
	const quadrature_option_type& qopt = quadrature_option_type())
{
  field_basic<T,M> lh;
  lh.assembly (expr.get_vf_space().get_geo()[domname], expr, qopt);
  return lh;
}
template <class Expr>
inline
field_basic<typename field_vf_expr<Expr>::scalar_type, typename field_vf_expr<Expr>::memory_type>
integrate (const std::string& domname, const field_vf_expr<Expr>& expr,
	const quadrature_option_type& qopt = quadrature_option_type())
{
  typedef typename field_vf_expr<Expr>::scalar_type T;
  typedef typename field_vf_expr<Expr>::memory_type M;
  field_basic<T,M> lh;
  lh.assembly (expr.get_vf_space().get_geo()[domname], expr, qopt);
  return lh;
}
template <class Expr>
inline
form_basic<typename form_vf_expr<Expr>::scalar_type, typename form_vf_expr<Expr>::memory_type>
integrate (const std::string& domname, const form_vf_expr<Expr>& expr,
	const form_option_type& fopt = form_option_type())
{
  // TODO: prendre le max de expr.get_test_space().get_geo() expr.get_trial_space().get_geo() puis [domain]
  typedef typename field_vf_expr<Expr>::scalar_type T;
  typedef typename field_vf_expr<Expr>::memory_type M;
  form_basic<T,M> a;
  a.assembly (expr.get_test_space().get_geo()[domname], expr, fopt);
  return a;
}
// ----------------------------------------------
// variational integration: on a band
// ----------------------------------------------
template <class T, class M>
inline
field_basic<T,M>
integrate (const band_basic<T,M>& gh, const test_basic<T,M,details::vf_tag_01>& expr,
	const quadrature_option_type& qopt = quadrature_option_type())
{
  field_basic<T,M> lh;
  lh.assembly (gh, expr, qopt);
  return lh;
}
template <class T, class M, class Expr>
inline
field_basic<T,M>
integrate (const band_basic<T,M>& gh, const field_vf_expr<Expr>& expr,
	const quadrature_option_type& qopt = quadrature_option_type())
{
  field_basic<T,M> lh;
  lh.assembly (gh, expr, qopt);
  return lh;
}
template <class T, class M, class Expr>
inline
form_basic<T, M>
integrate (const band_basic<T,M>& gh, const form_vf_expr<Expr>& expr,
	const form_option_type& fopt = form_option_type())
{
  form_basic<T,M> a;
  a.assembly (gh, expr, fopt);
  return a;
}
// ----------------------------------------------
// numeric integration
// ----------------------------------------------
template <class T, class M, class Function>
T integrate (const geo_basic<T,M>& dom, const field_functor<Function,T>& f, const quadrature_option_type& qopt)
{
  typedef field_expr_terminal_function<Function>  arg_t;
  typedef field_nonlinear_expr<arg_t>             expr_t;
  return details::integrate_numeric (dom, expr_t(arg_t(f.get_ref())), qopt);
}
// Float r = integrate(omega); ICI
template <class T, class M>
T integrate (const geo_basic<T,M>& dom, const T& f = 1, const quadrature_option_type& qopt = quadrature_option_type())
{
  typedef details::f_constant<point_basic<T>,T> f_cte_t;
  typedef field_expr_terminal_function<f_cte_t> arg_t;
  typedef field_nonlinear_expr<arg_t>           expr_t;
  f_cte_t f_cte (f);
  return details::integrate_numeric (dom, expr_t(arg_t(f_cte)), qopt);
}
template <class T, class M>
T integrate (const geo_basic<T,M>& dom, T (*f)(const point_basic<T>&), const quadrature_option_type& qopt)
{
  typedef T (*fun_t)(const point_basic<T>&);
  typedef field_expr_terminal_function<fun_t>     arg_t;
  typedef field_nonlinear_expr<arg_t>             expr_t;
  return details::integrate_numeric (dom, expr_t(arg_t(f)), qopt);
}
template <class T, class M>
T integrate (const geo_basic<T,M>& dom, const field_basic<T,M>& f, const quadrature_option_type& qopt)
{
  typedef field_expr_terminal_field<T,M>  arg_t;
  typedef field_nonlinear_expr<arg_t>     expr_t;
  return details::integrate_numeric (dom, expr_t(arg_t(f)), qopt);
}
template <class T, class M>
T integrate (const geo_basic<T,M>& dom, const field_indirect<T,M>& f, const quadrature_option_type& qopt)
{
  typedef field_expr_terminal_field<T,M>  arg_t;
  typedef field_nonlinear_expr<arg_t>     expr_t;
  return details::integrate_numeric (dom, expr_t(arg_t(f)), qopt);
}
template <class T, class M>
T integrate (const geo_basic<T,M>& dom, const field_indirect_const<T,M>& f, const quadrature_option_type& qopt)
{
  typedef field_expr_terminal_field<T,M>  arg_t;
  typedef field_nonlinear_expr<arg_t>     expr_t;
  return details::integrate_numeric (dom, expr_t(arg_t(f)), qopt);
}
template <class T, class M>
T integrate (const geo_basic<T,M>& dom, const field_component<T,M>& f, const quadrature_option_type& qopt)
{
  typedef field_expr_terminal_field<T,M>  arg_t;
  typedef field_nonlinear_expr<arg_t>     expr_t;
  return details::integrate_numeric (dom, expr_t(arg_t(f)), qopt);
}
template <class T, class M>
T integrate (const geo_basic<T,M>& dom, const field_component_const<T,M>& f, const quadrature_option_type& qopt)
{
  typedef field_expr_terminal_field<T,M>  arg_t;
  typedef field_nonlinear_expr<arg_t>     expr_t;
  return details::integrate_numeric (dom, expr_t(arg_t(f)), qopt);
}
template <class T, class M, class E>
T integrate (const geo_basic<T,M>& dom, const field_expr<E>& f, const quadrature_option_type& qopt)
{
  typedef field_expr_terminal_field<T,M>  arg_t;
  typedef field_nonlinear_expr<arg_t>     expr_t;
  return details::integrate_numeric (dom, expr_t(arg_t(f)), qopt);
}
template <class T, class M, class E>
T integrate (const geo_basic<T,M>& dom, const field_nonlinear_expr<E>& f, const quadrature_option_type& qopt)
{
  return details::integrate_numeric (dom, f, qopt);
}

}// namespace rheolef
#endif // _RHEO_INTEGRATE_H