This file is indexed.

/usr/include/rheolef/hack_array.h is in librheolef-dev 6.6-1build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
#ifndef _RHEOLEF_HACK_ARRAY_H
#define _RHEOLEF_HACK_ARRAY_H
//
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
///
/// =========================================================================
//
// massive hack vector for all T=geo_element of the same variant & order
// => elements have exactly the same size 
// Since the order is known only at at run time, geo_element size is unknown at
// compile time and the the array<T> cannot be used.
// 
// Nevertheless, the situation is similar at run time:
//  - elements can be stored contiguously in memory
//  - mpi communications can be efficienly performed, as for known MPI_Datatype
//
#include "rheolef/array.h"

namespace rheolef {

// -------------------------------------------------------------
// iterator
// -------------------------------------------------------------
template <class T, class Ref, class Ptr, class Raw, class RawIterator>
struct hack_array_iterator {
    typedef hack_array_iterator<T, Ref, Ptr, Raw, RawIterator>  _self;
    typedef hack_array_iterator<T, T&,  T*,  Raw, Raw*>         _iterator;

    typedef std::bidirectional_iterator_tag         iterator_category;
    typedef T                                       value_type;
    typedef Ref                                     reference;
    typedef Ptr                                     pointer;
    typedef typename T::size_type                   size_type;
    typedef typename std::iterator_traits<RawIterator>::difference_type difference_type;

    hack_array_iterator () 
      : _raw_iter(), _incr() {}
    hack_array_iterator (RawIterator raw_iter, size_type incr) 
      : _raw_iter(raw_iter), _incr(incr) {}
    hack_array_iterator (const _iterator& y) 
      : _raw_iter(y._raw_iter), _incr(y._incr) {}
    _self& operator++() { _raw_iter += _incr; return *this; }
    _self  operator++(int) { _self tmp = *this; operator++(); return tmp; }
    pointer   operator->() const { return   reinterpret_cast<pointer>(_raw_iter); }
    reference operator* () const { return *(reinterpret_cast<pointer>(_raw_iter)); }
    reference operator[] (size_type i) const { return *(reinterpret_cast<pointer>(_raw_iter + i*_incr)); }
    _self& operator+= (size_type n) { _raw_iter += n*_incr; return *this; }
    _self& operator-= (size_type n) { _raw_iter -= n*_incr; return *this; }
    _self  operator+  (size_type n) const { _self tmp = *this; tmp += n; return tmp; }
    _self  operator-  (size_type n) const { _self tmp = *this; tmp -= n; return tmp; }
    bool operator== (const _self& y) const { return _raw_iter == y._raw_iter && _incr == y._incr; }
    bool operator!= (const _self& y) const { return ! operator== (y); }

// data :
    RawIterator    _raw_iter;
    size_type      _incr;
};
// -------------------------------------------------------------
// the sequential representation
// -------------------------------------------------------------
template <class T, class A>
class hack_array_seq_rep : public array_rep<typename T::raw_type,sequential,A> {
public:

// typedefs:

  typedef array_rep<typename T::raw_type, sequential, A> base;
  typedef T		  	              raw_value_type;
  typedef typename T::generic_type            value_type;
  typedef typename T::generic_type            generic_value_type;
  typedef typename T::automatic_type          automatic_value_type;
  typedef A		  	              allocator_type;
  typedef typename T::parameter_type          parameter_type;
  typedef typename generic_value_type::raw_type	raw_type;
  typedef typename base::size_type            size_type;
  typedef value_type&		      	      reference;
  typedef const value_type&		      const_reference;
  typedef reference		  	      dis_reference;
  typedef sequential		  	      memory_type;

  typedef hack_array_iterator<generic_value_type, generic_value_type&, generic_value_type*, raw_type, raw_type*> 
	  iterator;
  typedef hack_array_iterator<generic_value_type, const generic_value_type&, const generic_value_type*, raw_type, const raw_type*>
	  const_iterator;

// allocators:

  hack_array_seq_rep (const A& alloc = A());
  hack_array_seq_rep (const distributor& ownership, const parameter_type& param, const A& alloc = A());
  void resize           (const distributor& ownership, const parameter_type& param);
  hack_array_seq_rep (size_type n, const parameter_type& param, const A& alloc = A());
  void resize           (size_type n, const parameter_type& param);

// accesors & modifiers

  A get_allocator() const               { return base::get_allocator(); }
  const distributor& ownership() const  { return _ownership; }
  const communicator& comm() const      { return ownership().comm(); }
  size_type          size()      const  { return ownership().size(); }
  size_type dis_size () const           { return ownership().dis_size(); }
  const generic_value_type& operator[] (size_type ie) const { 
    const raw_type *p = base::begin().operator->() + ie*_value_size;
    const T* q = (const T*)p;
    return *q;
  }
  generic_value_type& operator[] (size_type ie) { 
    raw_type *p = base::begin().operator->() + ie*_value_size;
    T* q = (T*)p;
    return *q;
  }
        iterator begin()       { return       iterator(base::begin().operator->(), _value_size); }
  const_iterator begin() const { return const_iterator(base::begin().operator->(), _value_size); }
        iterator end()         { return       iterator(base::begin().operator->() + size()*_value_size, _value_size); }
  const_iterator end()   const { return const_iterator(base::begin().operator->() + size()*_value_size, _value_size); }

// i/o:

  idiststream& get_values (idiststream& ips);
  odiststream& put_values (odiststream& ops) const;
  template <class GetFunction> idiststream& get_values (idiststream& ips, GetFunction get_element);
  template <class PutFunction> odiststream& put_values (odiststream& ops, PutFunction put_element) const;

protected:

// internals:

  void _init (const distributor& ownership, const parameter_type& param);

// data:

  distributor    _ownership;
  parameter_type _parameter;
  size_type      _value_size;
  size_type      _data_size;
};
// -------------------------------------------------------------
// the distributed representation
// -------------------------------------------------------------
#ifdef _RHEOLEF_HAVE_MPI
template <class T, class A>
class hack_array_mpi_rep : public hack_array_seq_rep<T,A> {
public:

// typedefs:

  typedef hack_array_seq_rep<T,A>          base;
  typedef typename base::base                 raw_base;
  typedef typename base::size_type   	      size_type;
  typedef typename base::value_type   	      value_type;
  typedef typename base::allocator_type       allocator_type;
  typedef typename base::generic_value_type   generic_value_type;
  typedef typename base::automatic_value_type automatic_value_type;
  typedef typename base::raw_type   	      raw_type;
  typedef typename base::parameter_type       parameter_type;
  typedef typename base::reference            reference;
  typedef typename base::const_reference      const_reference;
  typedef typename base::iterator             iterator;
  typedef typename base::const_iterator       const_iterator;
  typedef distributed		  	      memory_type;
  typedef std::map <size_type, automatic_value_type, std::less<size_type>, heap_allocator<std::pair<size_type,automatic_value_type> > >
                                              scatter_map_type;


  struct dis_reference {
    dis_reference (hack_array_mpi_rep<T,A>& x, size_type dis_i)
     : _x(x), _dis_i(dis_i) {}

    dis_reference& operator= (const generic_value_type& value) {
      _x.set_dis_entry (_dis_i, value);
      return *this;
    }
  // data:
  protected:
    hack_array_mpi_rep<T,A>& _x;
    size_type                 _dis_i;
  };

// allocators:

  hack_array_mpi_rep (const A& alloc = A());
  hack_array_mpi_rep (const distributor& ownership, const parameter_type& param, const A& alloc = A());
  void resize           (const distributor& ownership, const parameter_type& param);

// accessors & modifiers:

  A get_allocator() const               { return base::get_allocator(); }
  const distributor& ownership() const  { return base::_ownership; }
  const communicator& comm() const      { return ownership().comm(); }
  size_type dis_size () const           { return ownership().dis_size(); }

  size_type size() const       { return base::size(); }
  const generic_value_type& operator[] (size_type ie) const { return base::operator[] (ie); }
        generic_value_type& operator[] (size_type ie)       { return base::operator[] (ie); }

        iterator begin()       { return base::begin(); }
  const_iterator begin() const { return base::begin(); }
        iterator end()         { return base::end(); }
  const_iterator end()   const { return base::end(); }

  dis_reference dis_entry (size_type dis_i) { return dis_reference (*this, dis_i); }

  void dis_entry_assembly_begin ();
  void dis_entry_assembly_end ();
  void dis_entry_assembly ()       { dis_entry_assembly_begin (); dis_entry_assembly_end (); }

  template<class Set, class Map>
  void append_dis_entry (const Set& ext_idx_set, Map& ext_idx_map) const;

  template<class Set, class Map>
  void get_dis_entry (const Set& ext_idx_set, Map& ext_idx_map) const {
    	    ext_idx_map.clear();
    	    append_dis_entry (ext_idx_set, ext_idx_map);
  }

  template<class Set>
  void append_dis_indexes (const Set& ext_idx_set) const { append_dis_entry (ext_idx_set, _ext_x); }

  template<class Set>
  void set_dis_indexes    (const Set& ext_idx_set) { get_dis_entry    (ext_idx_set, _ext_x); }
  
  void update_dis_entries() const;

  const_reference dis_at (size_type dis_i) const;

  template <class A2>
  void repartition (					      // old_numbering for *this
        const array_rep<size_type,distributed,A2>& partition,	      // old_ownership
        hack_array_mpi_rep<T,A>&                new_array,	      // new_ownership (created)
        array_rep<size_type,distributed,A2>&    old_numbering,     // new_ownership
        array_rep<size_type,distributed,A2>&    new_numbering) const; // old_ownership

#ifdef TODO
    void permutation_apply (				      // old_numbering for *this
        const array_rep<size_type,distributed,>& new_numbering,        // old_ownership
        array_rep<T,distributed>&               new_array) const;     // new_ownership (already allocated)

    void reverse_permutation (                                // old_ownership for *this=iold2dis_inew
        array_rep<size_type,distributed>& inew2dis_iold) const;       // new_ownership
#endif // TODO

    // get all external pairs (dis_i, values):
    const scatter_map_type& get_dis_map_entries() const { return _ext_x; }

// i/o:

  idiststream& get_values (idiststream& ips);
  odiststream& put_values (odiststream& ops) const;
  template <class GetFunction> idiststream& get_values (idiststream& ips, GetFunction get_element);
  template <class PutFunction> odiststream& put_values (odiststream& ops, PutFunction put_element) const;

  template <class PutFunction, class Permutation>
  odiststream& permuted_put_values (
	odiststream& 	                   ops,	
	const Permutation&                 perm,
        PutFunction                        put_element) const;

protected:
    void set_dis_entry (size_type dis_i, const generic_value_type& val);
// typedefs:
    /** 1) stash: store data before assembly() communications:
      */
    typedef std::map <size_type, raw_type, std::less<size_type>, heap_allocator<std::pair<size_type,raw_type> > >   stash_map_type;

    /** 2) message: for communication during assembly_begin(), assembly_end()
      */
    struct message_type {
        std::list<std::pair<size_type,mpi::request>,A>    waits;
        std::vector<std::pair<size_type,raw_type>,A>      data;
    };
    /** 3) scatter (get_entry): specialized versions for T=container and T=simple type
      */
protected:
// data:
    stash_map_type   _stash;		// for assembly msgs:
    message_type     _send;
    message_type     _receive;
    size_type        _receive_max_size;
    mutable scatter_map_type _ext_x;	// for ext values (scatter)
};
#endif // _RHEOLEF_HAVE_MPI

/*Class:hack_array
NAME:  hack_array - container in distributed environment (@PACKAGE@-@VERSION@)
SYNOPSYS:       
@noindent
STL-like vector container for a distributed memory machine model.
Contrarily to array<T>, here T can have a size only known at compile time.
This class is used when T is a geo_element raw class, i.e. T=geo_element_e_raw.
The size of the geo_element depends upon the oder and is known only at run-time.
For efficiency purpose, the hack_array allocate all geo_elements of the 
same variant (e.g. edge) and order in a contiguous area, since the coreesponding
element size is constant.
EXAMPLE:
@noindent
 A sample usage of the class is:
@example
    std::pair<size_t,size_t> param (reference_element::t, 3); // triangle, order=3
    hack_array<geo_element_raw> x (distributor(100), param);
@end example
The hack_array<T> interface is similar to those of the array<T> one.

OBJECT REQUIREMENT:
 There are many pre-requises for the template objet type T:
@example
    class T : public T::generic_type @{
     typedef variant_type;
     typedef raw_type;
     typedef genetic_type;
     typedef automatic_type;
     static const variant_type _variant;
     static size_t _data_size(const parameter_type& param);
     static size_t _value_size(const parameter_type& param);
    @};
    class T::automatic_type : public T::generic_type @{
     automatic_type (const parameter_type& param);
    @};
    class T::generic_type @{
     typedef raw_type;
     typedef iterator;
     typedef const_iterator;
     iterator _data_begin();
     const_iterator _data_begin() const;
    @};
    ostream& operator<< (ostream&, const T::generic_type&);
@end example
AUTHOR: Pierre.Saramito@imag.fr
End:
*/
template <class T, class M = rheo_default_memory_model, class A = std::allocator<T> >
class hack_array {
public:
    typedef M memory_type;
    typedef typename std::vector<T,A>::size_type      size_type;
    typedef typename std::vector<T,A>::iterator       iterator;
    typedef typename std::vector<T,A>::const_iterator const_iterator;
};
//<verbatim:
template <class T, class A>
class hack_array<T,sequential,A> : public smart_pointer<hack_array_seq_rep<T,A> > {
public:

// typedefs:

    typedef hack_array_seq_rep<T,A>    rep;
    typedef smart_pointer<rep> 		  base;

    typedef sequential 			  memory_type;
    typedef typename rep::size_type 	  size_type;
    typedef typename rep::value_type 	  value_type;
    typedef typename rep::reference 	  reference;
    typedef typename rep::dis_reference   dis_reference;
    typedef typename rep::iterator 	  iterator;
    typedef typename rep::const_reference const_reference;
    typedef typename rep::const_iterator  const_iterator;
    typedef typename rep::parameter_type  parameter_type;

// allocators:

    hack_array (const A& alloc = A());
    hack_array (size_type loc_size,           const parameter_type& param, const A& alloc = A());
    void resize   (const distributor& ownership, const parameter_type& param);
    hack_array (const distributor& ownership, const parameter_type& param, const A& alloc = A());
    void resize   (size_type loc_size,           const parameter_type& param);

// local accessors & modifiers:

    A get_allocator() const              { return base::data().get_allocator(); }
    size_type     size () const          { return base::data().size(); }
    size_type dis_size () const          { return base::data().dis_size(); }
    const distributor& ownership() const { return base::data().ownership(); }
    const communicator& comm() const     { return ownership().comm(); }

    reference       operator[] (size_type i)       { return base::data().operator[] (i); }
    const_reference operator[] (size_type i) const { return base::data().operator[] (i); }

    const_reference dis_at (size_type dis_i) const { return base::data().operator[] (dis_i); }

          iterator begin()       { return base::data().begin(); }
    const_iterator begin() const { return base::data().begin(); }
          iterator end()         { return base::data().end(); }
    const_iterator end() const   { return base::data().end(); }

// global accessors (for compatibility with distributed interface):

    template<class Set> void append_dis_indexes (const Set& ext_idx_set) const {}
    void update_dis_entries() const {}

// global modifiers (for compatibility with distributed interface):

    dis_reference dis_entry (size_type dis_i) { return operator[] (dis_i); }
    void dis_entry_assembly()                 {}
    template<class SetOp>
    void dis_entry_assembly(SetOp my_set_op)        {}
    template<class SetOp>
    void dis_entry_assembly_begin (SetOp my_set_op) {}
    template<class SetOp>
    void dis_entry_assembly_end (SetOp my_set_op)   {}

// apply a partition:
 
#ifdef TODO
    template<class RepSize>
    void repartition (			             // old_numbering for *this
        const RepSize&         partition,	     // old_ownership
        hack_array<T,sequential,A>& new_array,	     // new_ownership (created)
        RepSize&               old_numbering,	     // new_ownership
        RepSize&               new_numbering) const  // old_ownership
        { return base::data().repartition (partition, new_array, old_numbering, new_numbering); }

    template<class RepSize>
    void permutation_apply (                       // old_numbering for *this
        const RepSize&          new_numbering,     // old_ownership
        hack_array<T,sequential,A>&  new_array) const   // new_ownership (already allocated)
        { return base::data().permutation_apply (new_numbering, new_array); }
#endif // TODO

// i/o:

    odiststream& put_values (odiststream& ops) const { return base::data().put_values(ops); }
    idiststream& get_values (idiststream& ips)       { return base::data().get_values(ips); }
    template <class GetFunction>
    idiststream& get_values (idiststream& ips, GetFunction get_element)       { return base::data().get_values(ips, get_element); }
    template <class PutFunction>
    odiststream& put_values (odiststream& ops, PutFunction put_element) const { return base::data().put_values(ops, put_element); }
#ifdef TODO
    void dump (std::string name) const { return base::data().dump(name); }
#endif // TODO
};
//>verbatim:
template <class T, class A>
inline
hack_array<T,sequential,A>::hack_array (
        const A&  alloc)
 : base(new_macro(rep(alloc)))
{
}
template <class T, class A>
inline
hack_array<T,sequential,A>::hack_array (
    	size_type             loc_size,
	const parameter_type& param,
        const A&              alloc)
 : base(new_macro(rep(loc_size,param,alloc)))
{
}
template <class T, class A>
inline
hack_array<T,sequential,A>::hack_array (
    	const distributor&    ownership,
	const parameter_type& param,
        const A&              alloc)
 : base(new_macro(rep(ownership,param,alloc)))
{
}
template <class T, class A>
inline
void
hack_array<T,sequential,A>::resize (
    	size_type             loc_size,
	const parameter_type& param)
{
  base::data().resize (loc_size,param);
}
template <class T, class A>
inline
void
hack_array<T,sequential,A>::resize (
    	const distributor& ownership,
	const parameter_type& param)
{
  base::data().resize (ownership,param);
}

#ifdef _RHEOLEF_HAVE_MPI
//<verbatim:
template <class T, class A>
class hack_array<T,distributed,A> : public smart_pointer<hack_array_mpi_rep<T,A> > {
public:

// typedefs:

    typedef hack_array_mpi_rep<T,A>    rep;
    typedef smart_pointer<rep> 		  base;

    typedef distributed 		  memory_type;
    typedef typename rep::size_type 	  size_type;
    typedef typename rep::value_type 	  value_type;
    typedef typename rep::reference 	  reference;
    typedef typename rep::dis_reference   dis_reference;
    typedef typename rep::iterator 	  iterator;
    typedef typename rep::parameter_type  parameter_type;
    typedef typename rep::const_reference const_reference;
    typedef typename rep::const_iterator  const_iterator;
    typedef typename rep::scatter_map_type scatter_map_type;

// allocators:

    hack_array (const A& alloc = A());
    hack_array (const distributor& ownership, const parameter_type& param, const A& alloc = A());
    void resize   (const distributor& ownership, const parameter_type& param);

// local accessors & modifiers:

    A get_allocator() const              { return base::data().get_allocator(); }
    size_type     size () const          { return base::data().size(); }
    size_type dis_size () const          { return base::data().dis_size(); }
    const distributor& ownership() const { return base::data().ownership(); }
    const communicator& comm() const     { return base::data().comm(); }

    reference       operator[] (size_type i)       { return base::data().operator[] (i); }
    const_reference operator[] (size_type i) const { return base::data().operator[] (i); }

          iterator begin()       { return base::data().begin(); }
    const_iterator begin() const { return base::data().begin(); }
          iterator end()         { return base::data().end(); }
    const_iterator end() const   { return base::data().end(); }

// global accessor:

    template<class Set, class Map>
    void append_dis_entry (const Set& ext_idx_set, Map& ext_idx_map) const { base::data().append_dis_entry (ext_idx_set, ext_idx_map); }

    template<class Set, class Map>
    void get_dis_entry    (const Set& ext_idx_set, Map& ext_idx_map) const { base::data().get_dis_entry (ext_idx_set, ext_idx_map); }

    template<class Set>
    void append_dis_indexes (const Set& ext_idx_set) const { base::data().append_dis_indexes (ext_idx_set); }

    template<class Set>
    void set_dis_indexes    (const Set& ext_idx_set)  { base::data().set_dis_indexes (ext_idx_set); }

    const_reference dis_at (size_type dis_i) const { return base::data().dis_at (dis_i); }

    // get all external pairs (dis_i, values):
    const scatter_map_type& get_dis_map_entries() const { return base::data().get_dis_map_entries(); }

    void update_dis_entries() const { base::data().update_dis_entries(); }

// global modifiers (for compatibility with distributed interface):

    dis_reference dis_entry (size_type dis_i)       { return base::data().dis_entry(dis_i); }

    void dis_entry_assembly()                       { return base::data().dis_entry_assembly(); }

    template<class SetOp>
    void dis_entry_assembly       (SetOp my_set_op) { return base::data().dis_entry_assembly       (my_set_op); }
    template<class SetOp>
    void dis_entry_assembly_begin (SetOp my_set_op) { return base::data().dis_entry_assembly_begin (my_set_op); }
    template<class SetOp>
    void dis_entry_assembly_end   (SetOp my_set_op) { return base::data().dis_entry_assembly_end   (my_set_op); }

// apply a partition:

    template<class RepSize>
    void repartition (			            // old_numbering for *this
        const RepSize&        partition,            // old_ownership
        hack_array<T,distributed>& new_array,            // new_ownership (created)
        RepSize&              old_numbering,        // new_ownership
        RepSize&              new_numbering) const  // old_ownership
        { return base::data().repartition (partition.data(), new_array.data(), old_numbering.data(), new_numbering.data()); }

#ifdef TODO
    template<class RepSize>
    void permutation_apply (                       // old_numbering for *this
        const RepSize&          new_numbering,     // old_ownership
        hack_array<T,distributed,A>& new_array) const   // new_ownership (already allocated)
        { base::data().permutation_apply (new_numbering.data(), new_array.data()); }

    void reverse_permutation (                                 // old_ownership for *this=iold2dis_inew
        hack_array<size_type,distributed,A>& inew2dis_iold) const   // new_ownership
        { base::data().reverse_permutation (inew2dis_iold.data()); }
#endif // TODO

// i/o:

    odiststream& put_values (odiststream& ops) const { return base::data().put_values(ops); }
    idiststream& get_values (idiststream& ips)       { return base::data().get_values(ips); }
#ifdef TODO
    void dump (std::string name) const 	    { return base::data().dump(name); }
#endif // TODO

    template <class GetFunction>
    idiststream& get_values (idiststream& ips, GetFunction get_element)   
	     { return base::data().get_values(ips, get_element); }
    template <class PutFunction>
    odiststream& put_values (odiststream& ops, PutFunction put_element) const
	     { return base::data().put_values(ops, put_element); }
  
    template <class PutFunction, class Permutation>
    odiststream& permuted_put_values (
	odiststream& 	                   ops,	
	const Permutation&                 perm,
        PutFunction                        put_element) const
	     { return base::data().permuted_put_values (ops, perm.data(), put_element); }
};
//>verbatim:
template <class T, class A>
inline
hack_array<T,distributed,A>::hack_array (
        const A&           alloc)
 : base(new_macro(rep(alloc)))
{
}
template <class T, class A>
inline
hack_array<T,distributed,A>::hack_array (
    	const distributor&    ownership,
	const parameter_type& param,
        const A&              alloc)
 : base(new_macro(rep(ownership,param,alloc)))
{
}
template <class T, class A>
inline
void
hack_array<T,distributed,A>::resize (
    	const distributor&    ownership,
	const parameter_type& param)
{
  base::data().resize (ownership,param);
}
#endif // _RHEOLEF_HAVE_MPI

// -------------------------------------------------------------
// i/o with operator<< & >>
// -------------------------------------------------------------
template <class T, class A>
inline
idiststream&
operator >> (idiststream& ips,  hack_array<T,sequential,A>& x)
{ 
    return x.get_values(ips); 
}
template <class T, class A>
inline
odiststream&
operator << (odiststream& ops, const hack_array<T,sequential,A>& x)
{
    return x.put_values(ops);
}
#ifdef _RHEOLEF_HAVE_MPI
template <class T, class A>
inline
idiststream&
operator >> (idiststream& ips,  hack_array<T,distributed,A>& x)
{ 
    return x.get_values(ips); 
}
template <class T, class A>
inline
odiststream&
operator << (odiststream& ops, const hack_array<T,distributed,A>& x)
{
    return x.put_values(ops);
}
#endif // _RHEOLEF_HAVE_MPI

}// namespace rheolef

// -------------------------------------------------------------
// not inlined : longer code
// -------------------------------------------------------------
#include "rheolef/hack_array_seq.icc"
#include "rheolef/hack_array_mpi.icc"

#endif // _RHEOLEF_HACK_ARRAY_H