/usr/include/rheolef/geo_element_v4.h is in librheolef-dev 6.6-1build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 | #ifndef _RHEOLEF_GEO_ELEMENT_V4_H
#define _RHEOLEF_GEO_ELEMENT_V4_H
//
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
///
/// =========================================================================
//
// geo_element class with arbitrarily order
//
// solution with a massive scratch vector
// for all geo_elements of the same variant & order
// An accessors as operator[] returns a true reference
// to the base class
//
// - avantages :
// * tableau massif de geo_element_e qui ont tous la meme taille
// => la memoire est contigue globalement, l'acces plus rapide avec
// les memoires caches actuelles
// * la memoire n'est plus geree par les objets eux-memes mais en amont
//
// - inconvenient : duplication de vptr et de order dans la table
// => petit gaspillage de memoire
//
#include "rheolef/reference_element.h"
#include "rheolef/geo_element_indirect.h"
#include "rheolef/heap_allocator.h"
#include "rheolef/array.h"
#include "rheolef/reference_element_face_transformation.h"
#include <boost/serialization/serialization.hpp>
#include <boost/serialization/base_object.hpp>
namespace rheolef {
// --------------------------------------------------------------------
// geo_element: abstract class
// --------------------------------------------------------------------
template <class A> class geo_element_auto;
/*Class:geo_element
NAME: @code{geo_element} - element of a mesh
@cindex geometrical element
@clindex reference element
@clindex geo_element
@clindex reference_element
@clindex geo
DESCRIPTION:
Defines geometrical elements and sides
as a set of vertice and edge indexes.
This element is obtained after a Piola transformation
from a reference element (@pxref{reference_element iclass}).
Indexes are related to arrays of edges and vertices.
These arrays are included in the description of the mesh.
Thus, this class is related of a given mesh instance
(@pxref{geo class}).
EXAMPLE:
This is the test of geo_element:
@example
geo_element_auto<> K;
K.set_name('t') ;
cout << "n_vertices: " << K.size() << endl
<< "n_edges : " << K.n_edges() << endl
<< "dimension : " << K.dimension() << endl << endl;
for(geo_element::size_type i = 0; i < K.size(); i++)
K[i] = i*10 ;
for(geo_element::size_type i = 0; i < K.n_edges(); i++)
K.set_edge(i, i*10+5) ;
cout << "vertices: local -> global" << endl;
for (geo_element::size_type vloc = 0; vloc < K.size(); vloc++)
cout << vloc << "-> " << K[vloc] << endl;
cout << endl
<< "edges: local -> global" << endl;
for (geo_element::size_type eloc = 0; eloc < K.n_edges(); eloc++) @{
geo_element::size_type vloc1 = subgeo_local_vertex(1, eloc, 0);
geo_element::size_type vloc2 = subgeo_local_vertex(1, eloc, 1);
cout << eloc << "-> " << K.edge(eloc) << endl
<< "local_vertex_from_edge(" << eloc
<< ") -> (" << vloc1 << ", " << vloc2 << ")" << endl;
@}
@end example
SEE ALSO: "geo"(3)
AUTHOR: Pierre.Saramito@imag.fr
DATE: 10 oct 2001, initial: 10 jan 1998
METHODS: @geo_element
End:
*/
class geo_element {
public:
// typedefs:
enum {
_variant_offset = 0, // i.e. type, as triangle(t) or tetra(T), etc
_order_offset = 1, // i.e. k, when Pk curved element
_dis_ie_offset = 2, // internal numbering, depend upon partitionand nproc
_ios_dis_ie_offset = 3, // i/o numbering, independent of parition and nproc
_master_offset = 4, // (d-1)-side has one or two master d-element that contains it
_last_offset = 6 // here starts node indexes, face indexes, etc
};
// Implementation note: _master_offset reserve 2 size_type but is used only for sides,
// i.e. tri or quad in 3d mesh, edge in 2d mesh, or point in 1d
// => waste a lot of place
// it would be better with a polymorphic class
// and the geo class would define an array of smart_pointers on this class
// so, we could define edge with or without the 2 size_type for master elements
// then, hack_array will become obsolete (good thing)
// and reference_element could be also polymorphic, avoiding large swich (variant)
// in all internal loops. This change of implementation will be considered
// in the future.
typedef reference_element::size_type size_type;
typedef reference_element::variant_type variant_type;
typedef size_type* iterator;
typedef const size_type* const_iterator;
typedef size_type raw_type;
typedef geo_element generic_type;
typedef geo_element_auto<heap_allocator<size_type> > automatic_type;
typedef geo_element_indirect::orientation_type orientation_type; // for sign (+1,-1)
typedef geo_element_indirect::shift_type shift_type; // for 0..3 face shift
struct parameter_type {
variant_type variant;
size_type order;
parameter_type (variant_type v = reference_element::max_variant, size_type o = 0)
: variant(v), order(o) {}
};
// affectation:
geo_element& operator= (const geo_element& K)
{
reset (K.variant(), K.order()); // resize auto, nothing for hack
std::copy (K._data_begin(), K._data_begin() + _data_size(), _data_begin());
reset (K.variant(), K.order()); // reset order=1 for hack, resize nothing for auto
return *this;
}
virtual ~geo_element() {}
virtual void reset (variant_type variant, size_type order) = 0;
// implicit conversion:
operator reference_element () const { return reference_element(variant()); }
// accessors & modifiers:
variant_type variant() const { return variant_type( *(_data_begin() + _variant_offset)); }
size_type order() const { return *(_data_begin() + _order_offset); }
size_type dis_ie() const { return *(_data_begin() + _dis_ie_offset); }
size_type ios_dis_ie() const { return *(_data_begin() + _ios_dis_ie_offset); }
size_type master (bool i) const { return *(_data_begin() + _master_offset + i); }
size_type dimension() const { return reference_element::dimension (variant()); }
size_type size() const { return reference_element::n_vertex (variant()); }
char name() const { return reference_element::name (variant()); }
size_type n_node() const { return reference_element::n_node (variant(), order()); }
void set_dis_ie (size_type dis_ie) { *(_data_begin() + _dis_ie_offset) = dis_ie; }
void set_ios_dis_ie (size_type ios_dis_ie) { *(_data_begin() + _ios_dis_ie_offset) = ios_dis_ie; }
void set_master (bool i, size_type dis_ie) const {
const_iterator p = _data_begin() + _master_offset + i; // mutable member fct
*(const_cast<iterator>(p)) = dis_ie;
}
iterator begin() { return _data_begin() + _node_offset (variant(), order()); }
const_iterator begin() const { return _data_begin() + _node_offset (variant(), order()); }
iterator end() { return begin() + size(); }
const_iterator end() const { return begin() + size(); }
size_type& operator[] (size_type loc_inod) { return *(begin() + loc_inod); }
size_type operator[] (size_type loc_inod) const { return *(begin() + loc_inod); }
size_type& node (size_type loc_inod) { return operator[] (loc_inod); }
size_type node (size_type loc_inod) const { return operator[] (loc_inod); }
iterator begin(size_type node_subgeo_dim) { return begin() + first_inod (node_subgeo_dim); }
const_iterator begin(size_type node_subgeo_dim) const { return begin() + first_inod (node_subgeo_dim); }
iterator end (size_type node_subgeo_dim) { return begin() + last_inod (node_subgeo_dim); }
const_iterator end (size_type node_subgeo_dim) const { return begin() + last_inod (node_subgeo_dim); }
const geo_element_indirect& edge_indirect (size_type i) const {
const_iterator p = _data_begin() + _edge_offset (variant(), order()) + i;
return *(reinterpret_cast<const geo_element_indirect*>(p));
}
const geo_element_indirect& face_indirect (size_type i) const {
const_iterator p = _data_begin() + _face_offset (variant(), order()) + i;
return *(reinterpret_cast<const geo_element_indirect*>(p));
}
geo_element_indirect& edge_indirect (size_type i) {
iterator p = _data_begin() + _edge_offset (variant(), order()) + i;
return *(reinterpret_cast<geo_element_indirect*>(p));
}
geo_element_indirect& face_indirect (size_type i) {
iterator p = _data_begin() + _face_offset (variant(), order()) + i;
return *(reinterpret_cast<geo_element_indirect*>(p));
}
size_type edge (size_type i) const { return (dimension() <= 1) ? dis_ie() : edge_indirect(i).index(); }
size_type face (size_type i) const { return (dimension() <= 2) ? dis_ie() : face_indirect(i).index(); }
size_type n_subgeo (size_type subgeo_dim) const {
return reference_element::n_subgeo (variant(), subgeo_dim); }
size_type subgeo_n_node (size_type subgeo_dim, size_type loc_isid) const {
return reference_element::subgeo_n_node (variant(), order(), subgeo_dim, loc_isid); }
size_type subgeo_local_node (size_type subgeo_dim, size_type loc_isid, size_type loc_jsidnod) const {
return reference_element::subgeo_local_node (variant(), order(), subgeo_dim, loc_isid, loc_jsidnod); }
size_type subgeo_size (size_type subgeo_dim, size_type loc_isid) const {
return reference_element::subgeo_n_node (variant(), 1, subgeo_dim, loc_isid); }
size_type subgeo_local_vertex(size_type subgeo_dim, size_type i_subgeo, size_type i_subgeo_vertex) const {
return reference_element::subgeo_local_node (variant(), 1, subgeo_dim, i_subgeo, i_subgeo_vertex); }
size_type first_inod (size_type subgeo_dim) const {
return reference_element::first_inod (variant(), order(), subgeo_dim); }
size_type last_inod (size_type subgeo_dim) const {
return reference_element::last_inod (variant(), order(), subgeo_dim); }
size_type n_edge () const { return n_subgeo (1); }
size_type n_face () const { return n_subgeo (2); }
// orientation accessors:
// seach S in all sides of K
orientation_type get_side_informations (
const geo_element& S,
size_type& loc_isid,
size_type& shift) const;
void get_side_informations (
const geo_element& S,
side_information_type& sid) const;
orientation_type get_side_orientation (const geo_element& S) const;
// compare two sides: S and *this
bool get_orientation_and_shift (const geo_element& S,
orientation_type& orient, shift_type& shift) const;
orientation_type get_edge_orientation (size_type dis_iv0, size_type dis_iv1) const;
void get_orientation_and_shift (
size_type dis_iv0, size_type dis_iv1, size_type dis_iv2,
orientation_type& orient,
shift_type& shift) const;
void get_orientation_and_shift (
size_type dis_iv0, size_type dis_iv1, size_type dis_iv2, size_type dis_iv3,
orientation_type& orient,
shift_type& shift) const;
// geometric predicate
template <class T, class M>
bool contains (const array<point_basic<T>,M>& node, const point_basic<T>& x) const;
// i/o;
friend std::istream& operator>> (std::istream& is, geo_element& K);
friend std::ostream& operator<< (std::ostream& os, const geo_element& K);
// static: fix orientation & shift helpers, for 2d edges & 3d faces:
static size_type fix_edge_indirect (
const geo_element& K,
size_type loc_iedg,
size_type loc_iedg_j,
size_type order);
static size_type fix_edge_indirect (
orientation_type orient,
size_type order,
size_type loc_iedg_j);
static void loc_tri_inod2lattice (
size_type loc_tri_inod,
size_type order,
point_basic<size_type>& ij_lattice);
static void loc_qua_inod2lattice (
size_type loc_qua_inod,
size_type order,
point_basic<size_type>& ij_lattice);
static size_type fix_triangle_indirect (
const geo_element& K,
size_type loc_itri,
size_type loc_itri_j,
size_type order);
static size_type fix_triangle_indirect (
orientation_type orient,
shift_type shift,
size_type order,
size_type loc_itri_j);
static size_type fix_quadrangle_indirect (
const geo_element& K,
size_type loc_iqua,
size_type loc_iqua_j,
size_type order);
static size_type fix_quadrangle_indirect (
orientation_type orient,
shift_type shift,
size_type order,
size_type loc_iqua_j);
// internals:
//protected:
static size_type _edge_offset (variant_type variant, size_type order) { return _last_offset; }
static size_type _face_offset (variant_type variant, size_type order) { return _edge_offset(variant,order) + reference_element::n_sub_edge(variant); }
static size_type _node_offset (variant_type variant, size_type order) { return _face_offset(variant,order) + reference_element::n_sub_face(variant); }
static size_type _data_size (variant_type variant, size_type order) { return _node_offset(variant,order) + reference_element::n_node(variant,order); }
static size_type _data_size (const parameter_type& p) { return _data_size (p.variant,p.order); }
size_type _data_size() const { return _data_size (variant(),order()); }
virtual iterator _data_begin() = 0;
virtual iterator _data_end() = 0;
virtual const_iterator _data_begin() const = 0;
virtual const_iterator _data_end() const = 0;
template<class Archive>
void serialize (Archive& ar, const unsigned int version) {
}
#ifdef TO_CLEAN
template<class A = std::allocator<std::vector<int>::size_type> > class geo_element_auto;
#endif // TO_CLEAN
};
// --------------------------------------------------------------------
// geo_element_auto: generic dynamically allocated class
// --------------------------------------------------------------------
template<class A = std::allocator<std::vector<int>::size_type> >
class geo_element_auto : public geo_element {
public:
// typedefs:
typedef A allocator_type;
typedef reference_element::size_type size_type;
typedef reference_element::variant_type variant_type;
typedef geo_element::iterator iterator;
typedef geo_element::const_iterator const_iterator;
typedef geo_element::parameter_type parameter_type;
typedef geo_element generic_type;
typedef geo_element::automatic_type automatic_type;
// allocators:
explicit geo_element_auto (const A& alloc = A())
: _data (_last_offset, std::numeric_limits<size_type>::max(), alloc)
{
_data [_variant_offset] = reference_element::max_variant;
_data [_order_offset] = 0;
}
explicit geo_element_auto (variant_type variant, size_type order = 1, const A& alloc = A())
: _data (_data_size(variant,order), std::numeric_limits<size_type>::max(), alloc)
{
_data [_variant_offset] = variant;
_data [_order_offset] = order;
}
explicit geo_element_auto (parameter_type p, const A& alloc = A())
: _data (_data_size(p), std::numeric_limits<size_type>::max(), alloc)
{
_data [_variant_offset] = p.variant;
_data [_order_offset] = p.order;
}
geo_element_auto (const geo_element& K)
: _data (K._data_size(), size_type(0), A()) // cree un nouvel allocateur
{ std::copy (K._data_begin(), K._data_end(), _data.begin()); }
geo_element_auto (const geo_element_auto<A>& K)
: _data (K._data.size(), size_type(0), K._data.get_allocator()) // re-utilise l'allocateur precedent
{ std::copy (K._data.begin(), K._data.end(), _data.begin()); }
template <class A2>
geo_element_auto (const geo_element_auto<A2>& K)
: _data (K._data.size(), size_type(0), A()) // cree un nouvel allocateur
{ std::copy (K._data.begin(), K._data.end(), _data.begin()); }
const geo_element_auto<A>& operator= (const geo_element& K)
{
_data.resize(K._data_size());
std::copy (K._data_begin(), K._data_end(), _data.begin());
return *this;
}
void reset (variant_type variant, size_type order) {
_data.resize (_data_size(variant,order), std::numeric_limits<size_type>::max());
_data [_variant_offset] = variant;
_data [_order_offset] = order;
}
void reset (const parameter_type& param) { reset (param.variant, param.order); }
// internals:
template<class Archive>
void serialize (Archive& ar, const unsigned int version) {
ar & boost::serialization::base_object<geo_element>(*this);
ar & _data;
}
//protected:
iterator _data_begin() { return _data.begin().operator->(); }
const_iterator _data_begin() const { return _data.begin().operator->(); }
iterator _data_end() { return _data.end().operator->(); }
const_iterator _data_end() const { return _data.end().operator->(); }
template <class A2> friend class geo_element_auto;
// data:
std::vector<size_type,A> _data;
};
// -------------------------------------------------------------------
// base raw class
// --------------------------------------------------------------------
class geo_element_hack : public geo_element {
public:
// constants & typedefs:
enum {
_vtable_size = 1 /* = sizeof(geo_element_X_hack)/sizeof(size_type) */
};
typedef geo_element::size_type size_type;
typedef geo_element::variant_type variant_type;
typedef geo_element::iterator iterator;
typedef geo_element::const_iterator const_iterator;
typedef geo_element::parameter_type parameter_type;
typedef size_type raw_type;
typedef geo_element generic_type;
typedef geo_element::automatic_type automatic_type;
// allocators:
geo_element_hack () : geo_element() {}
template <class A>
geo_element_hack (const geo_element_auto<A>& K) : geo_element()
{
check_macro (K.variant() == variant(), "incompatible conversion");
#ifdef TO_CLEAN
check_macro (K.order() == order(), "incompatible conversion");
#endif // TO_CLEAN
std::copy (K._data.begin(), K._data.begin() + _data_size(), _data_begin());
}
// accesors & modifiers
void reset (variant_type variant1, size_type order1) {
check_macro (variant1 == variant(), "cannot change variant from "<<variant()<<" to "<<variant1<<" in a raw element");
#ifdef TO_CLEAN
check_macro (order1 == 1, "cannot change order "<<order1<< " > 1 in a raw element");
#endif // TO_CLEAN
_set_data (_order_offset, 1);
}
// internals:
protected:
static size_type _size_of (const parameter_type& p) { return _vtable_size + _data_size(p); }
iterator _data_begin() { return reinterpret_cast<iterator> (this) + _vtable_size; }
const_iterator _data_begin() const { return reinterpret_cast<const_iterator>(this) + _vtable_size; }
iterator _data_end() { return _data_begin() + _data_size(); }
const_iterator _data_end() const { return _data_begin() + _data_size(); }
size_type _get_data (size_type i) const { return *(_data_begin() + i); }
size_type& _get_data_ref(size_type i) { return *(_data_begin() + i); }
void _set_data (size_type i, size_type value) { _get_data_ref(i) = value; }
void _reset (variant_type variant, size_type order) {
check_macro (order == 1, "cannot set order "<<order<< " > 1 in a raw element");
_set_data (_variant_offset, variant);
_set_data (_order_offset, order);
for (size_type i = _order_offset+1, n = _data_size (variant,order); i < n; i++) {
_set_data (i, std::numeric_limits<size_type>::max());
}
}
void _set_parameter (const parameter_type& p) { _reset (p.variant, p.order); }
template <class T, class A> friend class hack_array_seq_rep;
};
// -------------------------------------------------------------------
// permuted io helper
// --------------------------------------------------------------------
struct geo_element_permuted_put {
typedef geo_element::size_type size_type;
geo_element_permuted_put (const std::vector<size_type>& perm1) : perm(perm1) {}
std::ostream& operator() (std::ostream& os, const geo_element& K) {
static const bool do_verbose = true;
if (do_verbose || K.size() > 2 || K.order() > 1) { os << K.name() << "\t"; }
if (do_verbose || K.order() > 1) { os << "p" << K.order() << " "; }
for (geo_element::size_type iloc = 0; iloc < K.n_node(); iloc++) {
os << perm [K[iloc]];
if (iloc < K.n_node() - 1) os << " ";
}
return os;
}
const std::vector<size_type>& perm;
};
}// namespace rheolef
#endif // _RHEOLEF_GEO_ELEMENT_V4_H
|