/usr/include/rheolef/form_weighted.h is in librheolef-dev 6.6-1build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 | # ifndef _RHEOLEF_FORM_WEIGHTED_H
# define _RHEOLEF_FORM_WEIGHTED_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
///
/// =========================================================================
// form constructor: old interface with name
// maintained for backward compatibility purpose
//
#include "rheolef/form.h"
#include "rheolef/field_vf_expr_ops.h"
#include "rheolef/form_vf_expr_ops.h"
#include "rheolef/operators2.h"
#include "rheolef/form_vf_assembly.h"
namespace rheolef {
// backward compat with named forms:
// for each weight, it compiles all cases
// => not very efficient !
template<class T, class M, class WeightFunction>
bool
form_named_init (
form_basic<T,M>& a,
const geo_basic<T,M>& dom,
const std::string& name,
bool has_weight,
WeightFunction w,
const quadrature_option_type& qopt)
{
// backward compatibility code:
// branch to variational formulation routines:
test_basic<T,M,details::vf_tag_10> u (a.get_first_space()); // trial
test_basic<T,M,details::vf_tag_01> v (a.get_second_space()); // test
// --------------------------------
if (name == "mass") {
// --------------------------------
switch (a.get_first_space().valued_tag()) {
case space_constant::scalar:
if (!has_weight) a.assembly (dom, u*v, qopt);
else a.assembly (dom, w*(u*v), qopt);
return true;
case space_constant::vector:
if (!has_weight) a.assembly (dom, dot(u,v), qopt);
else fatal_macro ("unsupported vectorial mass with weight (HINT: use integrate())");
// a.assembly (dom, dot(w*u,v), qopt); compil pbs ?
return true;
default:
case space_constant::tensor:
if (!has_weight) a.assembly (dom, ddot(u,v), qopt);
else fatal_macro ("unsupported tensorial mass with weight (HINT: use integrate())");
// a.assembly (dom, ddot(w*u,v), qopt); compil pbs ?
return true;
}
// --------------------------------
} else if (name == "inv_mass") {
// --------------------------------
check_macro (!has_weight, "unsupported weighted "<<name<<" form (HINT: use integrate())");
form_option_type fopt (qopt);
fopt.invert = true;
switch (a.get_first_space().valued_tag()) {
case space_constant::scalar: a.assembly (dom, u*v, fopt); return true;
case space_constant::vector: a.assembly (dom, dot(u,v), fopt); return true;
default:
case space_constant::tensor: a.assembly (dom, ddot(u,v), fopt); return true;
}
// --------------------------------
} else if (name == "lumped_mass") {
// --------------------------------
check_macro (!has_weight, "unsupported weighted "<<name<<" form (HINT: use integrate())");
form_option_type fopt (qopt);
fopt.lump = true;
switch (a.get_first_space().valued_tag()) {
case space_constant::scalar: a.assembly (dom, u*v, fopt); return true;
case space_constant::vector: a.assembly (dom, dot(u,v), fopt); return true;
default:
case space_constant::tensor: a.assembly (dom, ddot(u,v), fopt); return true;
}
// --------------------------------
} else if (name == "grad") {
// --------------------------------
if (!has_weight) a.assembly (dom, dot(grad(u),v), qopt);
else a.assembly (dom, dot(w*grad(u),v), qopt);
return true;
// --------------------------------
} else if (name == "div") {
// --------------------------------
check_macro (!has_weight, "unsupported weighted "<<name<<" form (HINT: use integrate())");
a.assembly (dom, div(u)*v, qopt);
return true;
// --------------------------------
} else if (name == "2D") {
// --------------------------------
if (!has_weight) a.assembly (dom, 2.*ddot(D(u),v), qopt);
else a.assembly (dom, 2.*ddot(w*D(u),v), qopt);
return true;
// --------------------------------
} else if (name == "grad_grad") {
// --------------------------------
switch (a.get_first_space().valued_tag()) {
case space_constant::scalar:
if (!has_weight) a.assembly (dom, dot(grad(u),grad(v)), qopt);
else a.assembly (dom, dot(w*grad(u),grad(v)), qopt);
return true;
default:
case space_constant::vector:
if (!has_weight) a.assembly (dom, ddot(grad(u),grad(v)), qopt);
else a.assembly (dom, ddot(w*grad(u),grad(v)), qopt);
return true;
}
// --------------------------------
} else if (name == "2D_D") {
// --------------------------------
if (!has_weight) a.assembly (dom, 2.*ddot(D(u),D(v)), qopt);
else a.assembly (dom, 2.*ddot(w*D(u),D(v)), qopt);
return true;
// --------------------------------
} else if (name == "div_div") {
// --------------------------------
check_macro (!has_weight, "unsupported weighted "<<name<<" form (HINT: use integrate())");
a.assembly (dom, div(u)*div(v), qopt);
return true;
// --------------------------------
} else if (name == "curl") {
// --------------------------------
check_macro (!has_weight, "unsupported weighted "<<name<<" form (HINT: use integrate())");
if (u.get_vf_space().get_geo().dimension() == 2 &&
u.get_vf_space().valued_tag() == space_constant::vector)
a.assembly (dom, curl(u)*v, qopt);
else a.assembly (dom, dot(curl(u),v), qopt);
return true;
}
return false;
}
template<class T, class M>
template<class WeightFunction>
void
form_basic<T,M>::form_init (
const std::string& name,
bool has_weight,
WeightFunction w,
const quadrature_option_type& qopt)
{
if (name == "" || name == "nul" || name == "null") {
// empty name => nul form, but with declared csr matrix sizes
_uu.resize (_Y.iu_ownership(), _X.iu_ownership());
_ub.resize (_Y.iu_ownership(), _X.ib_ownership());
_bu.resize (_Y.ib_ownership(), _X.iu_ownership());
_bb.resize (_Y.ib_ownership(), _X.ib_ownership());
return;
}
// determine the domain of integration:
typedef typename form_basic<T,M>::float_type float_type;
check_macro (_X.get_geo().get_background_geo() == _Y.get_geo().get_background_geo(),
"form("<<name<<") between incompatible geo " << _X.get_geo().name() << " and " << _Y.get_geo().name());
bool X_is_on_domain = (_X.get_geo().variant() == geo_abstract_base_rep<float_type>::geo_domain);
bool Y_is_on_domain = (_Y.get_geo().variant() == geo_abstract_base_rep<float_type>::geo_domain);
geo_basic<T,M> dom;
if ((!X_is_on_domain && ! Y_is_on_domain) || (X_is_on_domain && Y_is_on_domain)) {
dom = _X.get_geo();
} else if (X_is_on_domain) {
dom = _X.get_geo().get_background_domain();
} else {// Y_is_on_domain
dom = _Y.get_geo().get_background_domain();
}
// try the new form initializer interface:
if (form_named_init (*this, dom, name, has_weight, w, qopt)) return;
fatal_macro ("unsupported form name: \""<<name<<"\" (HINT: use integrate())");
}
template<class T, class M>
template<class Function>
inline
form_basic<T,M>::form_basic (
const space_type& X,
const space_type& Y,
const std::string& name,
Function weight,
const quadrature_option_type& qopt)
: _X(X),
_Y(Y),
_uu(),
_ub(),
_bu(),
_bb()
{
form_init (name, true, weight, qopt);
}
// ================================================================
// also for Robin boundary conditions with a non-constant coef
// ================================================================
template<class T, class M>
template<class WeightFunction>
void
form_basic<T,M>::form_init_on_domain (
const std::string& name,
const geo_basic<T,M>& gamma,
bool has_weight,
WeightFunction w,
const geo_basic<T,M>& w_omega,
const quadrature_option_type& qopt)
{
const geo_basic<T,M>& omega = _X.get_geo().get_background_geo();
// try the new interface:
if (form_named_init (*this, gamma, name, has_weight, w, qopt)) return;
fatal_macro ("unsupported form name: \""<<name<<"\"");
}
template<class T, class M>
template<class Function>
form_basic<T,M>::form_basic (
const space_type& X,
const space_type& Y,
const std::string& name,
const geo_basic<T,M>& gamma,
Function weight,
const quadrature_option_type& qopt)
: _X(X),
_Y(Y),
_uu(),
_ub(),
_bu(),
_bb()
{
// example:
// form m (V,V,"mass",gamma, weight); e.g. \int_\Gamma trace(u) trace(v) weight(x) ds
// with:
// geo omega ("square");
// geo gamma = omega["boundary"];
// V = space(omega,"P1");
// Note: transform the domain gamma into a compacted-mesh for the
// evaluation of the weight
form_init_on_domain (name, gamma, true, weight, compact(gamma), qopt);
}
}// namespace rheolef
# endif /* _RHEOLEF_FORM_WEIGHTED_H */
|