This file is indexed.

/usr/include/rheolef/form.h is in librheolef-dev 6.6-1build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
# ifndef _RHEOLEF_FORM_H
# define _RHEOLEF_FORM_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
/// 
/// =========================================================================

#include "rheolef/csr.h"
#include "rheolef/field.h"
#include "rheolef/quadrature.h"
#include "rheolef/form_option_type.h"
namespace rheolef { 

// these classes are used for allocator from the std::initializer_list
template <class T, class M> class form_concat_value;
template <class T, class M> class form_concat_line;

// forward declaration:
template <class T, class M> class band_basic;

/*Class:form
NAME:  @code{form} - representation of a finite element bilinear form
DESCRIPTION:       
  The form class groups four sparse matrix, associated to 
  a bilinear form on two finite element spaces:
  @example
       a: U*V   ----> IR
         (u,v)  |---> a(u,v)
  @end example
  The operator @code{A} associated to the bilinear form is
  defined by:
  @example
       A: U  ----> V'
          u  |---> A(u)
  @end example
  where @code{u} and @code{v} are fields (@pxref{field class}),
  and @code{A(u)} is such that @code{a(u,v)=<A(u),v>}
  for all u in U and v in V and where @code{<.,.>} denotes
  the duality product between V and V'.
  Since V is a finite dimensional spaces, the duality product is
  the euclidian product in IR^dim(V).

  Since both U and V are finite dimensional spaces,
  the linear operator can be represented by a matrix.
  The @code{form} class is represented by four sparse matrix
  in @code{csr} format (@pxref{csr class}),
  associated to unknown and blocked degrees of freedom 
  of origin and destination spaces (@pxref{space class}).
EXAMPLE:
  
  The operator A associated to a bilinear form a(.,.) by
  the relation (Au,v) = a(u,v) could be applied by using
  a sample matrix notation A*u, as shown by the following code:
  @example
      geo omega("square");
      space V (omega,"P1");
      form a (V,V,"grad_grad");
      field uh = interpolate (fct, V);
      field vh = a*uh;
      cout << v;
  @end example

  The form-field @code{vh=a*uh} operation is equivalent to
  the following matrix-vector operations:
  @example
     vh.set_u() = a.uu()*uh.u() + a.ub()*uh.b();
     vh.set_b() = a.bu()*uh.u() + a.bb()*uh.b();
  @end example

ALGEBRA:
  Forms, as matrices (see @ref{csr class}), support linear algebra:
  Adding or substracting two forms writes @code{a+b} and @code{a-b}, respectively,
  and multiplying a form by a field @code{uh} writes @code{a*uh}.
  Thus, any linear combination of forms is available.

@cindex quarature formula
WEIGHTED FORM:
  A weighted form is a form with an extra weight function @code{w(x)}, e.g.:
  @example
                   /
                  |
       a(uh,vh) = |       grad(uh).grad(vh) w(x) dx
                  |
                 / Omega
  @end example
  In the present implementation, @code{w} can be any field, function or class-function
  or any nonlinear field expression (@pxref{field class}).
  As the integration cannot be performed exactly in general, a quadrature formula
  can be supplied.
  This feature is extensively used when solving nonlinear problems.
 
SEE ALSO: "space"(3), "field"(3), "csr"(3)
AUTHOR: Pierre.Saramito@imag.fr
DATE:   2 july 1997
METHODS: @form
End:
*/

//<form:
template<class T, class M>
class form_basic {
public :
// typedefs:

    typedef typename csr<T,M>::size_type    size_type;
    typedef T                               value_type;
    typedef typename scalar_traits<T>::type float_type;
    typedef geo_basic<float_type,M>         geo_type;
    typedef space_basic<float_type,M>       space_type;

// allocator/deallocator:

    form_basic ();
    form_basic (const form_basic<T,M>&);


// allocators from initializer list (c++ 2011):

#ifdef _RHEOLEF_HAVE_STD_INITIALIZER_LIST
    form_basic (const std::initializer_list<form_concat_value<T,M> >& init_list);
    form_basic (const std::initializer_list<form_concat_line <T,M> >& init_list);
#endif // _RHEOLEF_HAVE_STD_INITIALIZER_LIST

// accessors:

    const space_type& get_first_space() const;
    const space_type& get_second_space() const;
    const geo_type&   get_geo() const;

    const communicator& comm() const;

// linear algebra:

    form_basic<T,M>  operator+  (const form_basic<T,M>& b) const;
    form_basic<T,M>  operator-  (const form_basic<T,M>& b) const;
    form_basic<T,M>  operator*  (const form_basic<T,M>& b) const;
    form_basic<T,M>& operator*= (const T& lambda);
    field_basic<T,M> operator*  (const field_basic<T,M>& xh) const;
    field_basic<T,M> trans_mult (const field_basic<T,M>& yh) const;
    float_type operator () (const field_basic<T,M>& uh, const field_basic<T,M>& vh) const;

// io:

    odiststream& put (odiststream& ops, bool show_partition = true) const;
    void dump (std::string name) const;

// accessors & modifiers to unknown & blocked parts:

    const csr<T,M>&     uu() const { return _uu; }
    const csr<T,M>&     ub() const { return _ub; }
    const csr<T,M>&     bu() const { return _bu; }
    const csr<T,M>&     bb() const { return _bb; }
          csr<T,M>& set_uu()       { return _uu; }
          csr<T,M>& set_ub()       { return _ub; }
          csr<T,M>& set_bu()       { return _bu; }
          csr<T,M>& set_bb()       { return _bb; }

// data
protected:
    space_type  _X;
    space_type  _Y;
    csr<T,M>    _uu;
    csr<T,M>    _ub;
    csr<T,M>    _bu;
    csr<T,M>    _bb;

// internals:
public: 
    // with vf expression arg
    template <class Expr>
    void assembly_internal (
        const geo_basic<T,M>&         dom,
        const geo_basic<T,M>&         band,
        const band_basic<T,M>&        gh,
        const Expr&                   expr,
        const form_option_type&       fopt,
        bool                          is_on_band);
    template <class Expr>
    void assembly (
        const geo_basic<T,M>&         domain,
        const Expr&                   expr,
        const form_option_type&       fopt);
    template <class Expr>
    void assembly (
        const band_basic<T,M>&        gh,
        const Expr&                   expr,
        const form_option_type&       fopt);

    // backward compat: named forms
    form_basic (const space_type& X, const space_type& Y,
	const std::string& name = "",
	const quadrature_option_type& qopt = quadrature_option_type(quadrature_option_type::max_family));

    form_basic (const space_type& X, const space_type& Y,
	const std::string& name,
	const field_basic<T,M>& weight, 
	const quadrature_option_type& qopt = quadrature_option_type(quadrature_option_type::max_family));

    template<class Function>
    form_basic (const space_type& X, const space_type& Y,
	const std::string& name,
	Function weight,
	const quadrature_option_type& qopt = quadrature_option_type(quadrature_option_type::max_family));

    form_basic (const space_type& X, const space_type& Y,
	const std::string& name,
	const geo_basic<T,M>& gamma,
	const quadrature_option_type& qopt = quadrature_option_type(quadrature_option_type::max_family));

    form_basic (const space_type& X, const space_type& Y,
	const std::string& name,
	const geo_basic<T,M>& gamma,
	const field_basic<T,M>& weight,
	const quadrature_option_type& qopt = quadrature_option_type(quadrature_option_type::max_family));

    template<class Function>
    form_basic (
        const space_type& X, 
        const space_type& Y,
        const std::string& name,
        const geo_basic<T,M>& gamma,
        Function weight,
	const quadrature_option_type& qopt = quadrature_option_type(quadrature_option_type::max_family));
protected: 
    // backward compat: named forms (cont.)
    template<class WeightFunction>
    void form_init (
                   const std::string&      name,
                   bool                    has_weight,
                   WeightFunction          weight,
                   const quadrature_option_type& qopt);
    template<class WeightFunction>
    void form_init_on_domain (
    		   const std::string&      name,
                   const geo_basic<T,M>&   gamma,
                   bool                    has_weight,
    		   WeightFunction          weight,
    		   const geo_basic<T,M>&   w_omega, // the domain where the fct weight is defined
    		   const quadrature_option_type& qopt);
};
template<class T, class M> form_basic<T,M> trans (const form_basic<T,M>& a);
template<class T, class M> field_basic<T,M> diag (const form_basic<T,M>& a);
template<class T, class M> form_basic<T,M>  diag (const field_basic<T,M>& dh);
typedef form_basic<Float,rheo_default_memory_model> form;
//>form:

// ------------ inline'd -----------------------------------

template<class T, class M>
inline
form_basic<T,M>::form_basic ()
: _X(), _Y(), _uu(), _ub(), _bu(), _bb()
{
}
template<class T, class M>
inline
form_basic<T,M>::form_basic (const form_basic<T,M>& a)
: _X(a._X), _Y(a._Y), _uu(a._uu), _ub(a._ub), _bu(a._bu), _bb(a._bb)
{
}
template<class T, class M>
inline
const typename form_basic<T,M>::space_type&
form_basic<T,M>::get_first_space() const
{
  return _X;
}
template<class T, class M>
inline
const typename form_basic<T,M>::space_type&
form_basic<T,M>::get_second_space() const
{
  return _Y;
}
template<class T, class M>
inline
const typename form_basic<T,M>::geo_type&
form_basic<T,M>::get_geo() const
{
  return _X.get_geo();
}
template<class T, class M>
inline
const communicator&
form_basic<T,M>::comm() const
{
  return get_geo().comm();
}
// ----------------
// linear albebra
// ----------------
template<class T, class M>
inline
form_basic<T,M>
form_basic<T,M>::operator+ (const form_basic<T,M>& b) const
{
  form_basic<T,M> c (get_first_space(), get_second_space());
  c._uu = _uu + b._uu;
  c._ub = _ub + b._ub;
  c._bu = _bu + b._bu;
  c._bb = _bb + b._bb;
  return c;
}
template<class T, class M>
inline
form_basic<T,M>
form_basic<T,M>::operator- (const form_basic<T,M>& b) const
{
  form_basic<T,M> c (get_first_space(), get_second_space());
  c._uu = _uu - b._uu;
  c._ub = _ub - b._ub;
  c._bu = _bu - b._bu;
  c._bb = _bb - b._bb;
  return c;
}
template<class T, class M>
inline
form_basic<T,M>
form_basic<T,M>::operator* (const form_basic<T,M>& b) const
{
  form_basic<T,M> c (b.get_first_space(), get_second_space());
  c._uu = _uu*b._uu + _ub*b._bu;
  c._ub = _uu*b._ub + _ub*b._bb;
  c._bu = _bu*b._uu + _bb*b._bu;
  c._bb = _bu*b._ub + _bb*b._bb;
  return c;
}
template<class T, class M>
inline
form_basic<T,M>&
form_basic<T,M>::operator*= (const T& lambda)
{
  _uu *= lambda;
  _ub *= lambda;
  _bu *= lambda;
  _bb *= lambda;
  return *this;
}
template<class T, class M>
inline
form_basic<T,M>
operator* (const T& lambda, const form_basic<T,M>& a)
{
  form_basic<T,M> b = a;
  b *= lambda;
  return b;
}
template<class T, class M>
inline
form_basic<T,M>
operator- (const form_basic<T,M>& a)
{
  return T(-1)*a;
}

}// namespace rheolef
# endif /* _RHEOLEF_FORM_H */