/usr/include/rheolef/array.h is in librheolef-dev 6.6-1build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 | #ifndef _RHEO_ARRAY_H
#define _RHEO_ARRAY_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
///
/// =========================================================================
#include "rheolef/distributed.h"
#include "rheolef/distributor.h"
#include "rheolef/diststream.h"
#include "rheolef/heap_allocator.h"
#include "rheolef/msg_util.h"
#include "rheolef/container_traits.h"
#ifdef _RHEOLEF_HAVE_MPI
#include "rheolef/mpi_pair_datatype.h"
#endif // _RHEOLEF_HAVE_MPI
#include <boost/mpl/bool.hpp>
#include <boost/type_traits/remove_const.hpp>
namespace rheolef {
/// @brief array element output helper
template <class T>
struct _array_put_element_type {
std::ostream& operator() (std::ostream& os, const T& x) { return os << x; }
};
template <class T>
struct _array_put_matlab_type {
std::ostream& operator() (std::ostream& os, const T& x) { return os << x << ";"; }
};
/// @brief array element input helper
template <class T>
struct _array_get_element_type {
std::istream& operator() (std::istream& is, T& x) { return is >> x; }
};
} // namespace rheolef
// -------------------------------------------------------------
// the sequential representation
// -------------------------------------------------------------
namespace rheolef {
template <class T, class M, class A> class array_rep {};
template <class T, class A>
class array_rep<T,sequential,A> : public std::vector<T,A> {
public:
typedef T value_type;
typedef A allocator_type;
typedef typename A::difference_type difference_type;
typedef std::vector<T,A> base;
typedef typename base::size_type size_type;
typedef typename base::iterator iterator;
typedef typename base::const_iterator const_iterator;
typedef typename base::const_reference const_reference;
typedef typename base::reference reference;
typedef reference dis_reference;
typedef distributor::communicator_type communicator_type;
typedef sequential memory_type;
explicit array_rep (const A& alloc = A());
array_rep (const distributor& ownership, const T& init_val = T(), const A& alloc = A());
void resize (const distributor& ownership, const T& init_val = T());
array_rep (size_type loc_size = 0, const T& init_val = T(), const A& alloc = A());
void resize (size_type loc_size = 0, const T& init_val = T());
array_rep (const array_rep<T,sequential,A>& x);
A get_allocator() const { return base::get_allocator(); }
size_type size() const { return base::size(); }
iterator begin() { return base::begin(); }
const_iterator begin() const { return base::begin(); }
iterator end() { return base::end(); }
const_iterator end() const { return base::end(); }
const distributor& ownership() const { return _ownership; }
reference operator[] (size_type i) { return base::operator[] (i); }
const_reference operator[] (size_type i) const { return base::operator[] (i); }
const_reference dis_at (size_type dis_i) const { return operator[] (dis_i); }
size_type dis_size () const { return base::size(); }
size_type first_index () const { return 0; }
size_type last_index () const { return base::size(); }
reference dis_entry (size_type dis_i) { return operator[](dis_i); }
void reset_dis_indexes() const {}
template<class SetOp = typename default_set_op<T>::type>
void dis_entry_assembly_begin (SetOp = SetOp()) {}
template<class SetOp = typename default_set_op<T>::type>
void dis_entry_assembly_end (SetOp = SetOp()) {}
void repartition ( // old_numbering for *this
const array_rep<size_type,sequential,A>& partition, // old_ownership
array_rep<T,sequential,A>& new_array, // new_ownership (created)
array_rep<size_type,sequential,A>& old_numbering, // new_ownership
array_rep<size_type,sequential,A>& new_numbering) const // old_ownership
{
error_macro ("not yet");
}
template<class A2>
void reverse_permutation ( // old_ownership for *this=iold2dis_inew
array_rep<size_type,sequential,A2>& inew2dis_iold) const; // new_ownership
idiststream& get_values (idiststream& s);
odiststream& put_values (odiststream& s) const;
odiststream& put_matlab (odiststream& s) const;
template <class GetFunction> idiststream& get_values (idiststream& ips, GetFunction get_element);
template <class PutFunction> odiststream& put_values (odiststream& ops, PutFunction put_element) const;
void dump (std::string name) const;
protected:
// data:
distributor _ownership;
};
// -------------------------------------------------------------
// the distributed representation
// -------------------------------------------------------------
#ifdef _RHEOLEF_HAVE_MPI
template <class T, class A>
class array_rep<T,distributed,A> : public array_rep<T,sequential,A> {
public:
// typedefs:
typedef array_rep<T,sequential,A> base;
typedef typename base::value_type value_type;
typedef typename base::size_type size_type;
typedef typename base::difference_type difference_type;
typedef typename base::reference reference;
typedef typename base::const_reference const_reference;
typedef typename base::iterator iterator;
typedef typename base::const_iterator const_iterator;
typedef distributor::communicator_type communicator_type;
typedef distributed memory_type;
typedef std::map <size_type, T, std::less<size_type>, heap_allocator<std::pair<size_type,T> > >
scatter_map_type;
struct dis_reference {
dis_reference (array_rep<T,distributed,A>& x, size_type dis_i)
: _x(x), _dis_i(dis_i) {}
dis_reference& operator= (const T& value) {
_x.set_dis_entry (_dis_i, value);
return *this;
}
template<class U>
dis_reference& operator+= (const U& value) {
_x.set_add_dis_entry (_dis_i, value);
return *this;
}
// data:
protected:
array_rep<T,distributed,A>& _x;
size_type _dis_i;
};
// allocators:
array_rep (const distributor& ownership, const T& init_val = T(), const A& alloc = A());
void resize (const distributor& ownership, const T& init_val = T());
array_rep (const array_rep<T,distributed,A>& x);
A get_allocator() const { return base::get_allocator(); }
size_type size() const { return base::size(); }
const_iterator begin() const { return base::begin(); }
const_iterator end() const { return base::end(); }
iterator begin() { return base::begin(); }
iterator end() { return base::end(); }
const distributor& ownership() const { return base::_ownership; }
const mpi::communicator& comm() const { return ownership().comm(); }
size_type first_index () const { return ownership().first_index(); }
size_type last_index () const { return ownership().last_index(); }
size_type dis_size () const { return ownership().dis_size(); }
dis_reference dis_entry (size_type dis_i) { return dis_reference (*this, dis_i); }
template<class SetOp = typename default_set_op<T>::type>
void dis_entry_assembly_begin (SetOp my_set_op = SetOp());
template<class SetOp = typename default_set_op<T>::type>
void dis_entry_assembly_end (SetOp my_set_op = SetOp());
template<class SetOp = typename default_set_op<T>::type>
void dis_entry_assembly (SetOp my_set_op = SetOp())
{ dis_entry_assembly_begin (my_set_op); dis_entry_assembly_end (my_set_op); }
template<class Set, class Map>
void append_dis_entry (const Set& ext_idx_set, Map& ext_idx_map) const;
template<class Set, class Map>
void get_dis_entry (const Set& ext_idx_set, Map& ext_idx_map) const {
ext_idx_map.clear();
append_dis_entry (ext_idx_set, ext_idx_map);
}
template<class Set>
void append_dis_indexes (const Set& ext_idx_set) const { append_dis_entry (ext_idx_set, _ext_x); }
template<class Set>
void set_dis_indexes (const Set& ext_idx_set) const { get_dis_entry (ext_idx_set, _ext_x); }
void reset_dis_indexes() const;
const_reference dis_at (size_type dis_i) const;
// get all external pairs (dis_i, values):
const scatter_map_type& get_dis_map_entries() const { return _ext_x; }
template<class A2>
void repartition ( // old_numbering for *this
const array_rep<size_type,distributed,A2>& partition, // old_ownership
array_rep<T,distributed,A>& new_array, // new_ownership (created)
array_rep<size_type,distributed,A2>& old_numbering, // new_ownership
array_rep<size_type,distributed,A2>& new_numbering) const; // old_ownership
template<class A2>
void permutation_apply ( // old_numbering for *this
const array_rep<size_type,distributed,A2>& new_numbering, // old_ownership
array_rep<T,distributed,A>& new_array) const; // new_ownership (already allocated)
template<class A2>
void reverse_permutation ( // old_ownership for *this=iold2dis_inew
array_rep<size_type,distributed,A2>& inew2dis_iold) const; // new_ownership
idiststream& get_values (idiststream& s);
odiststream& put_values (odiststream& s) const;
odiststream& put_matlab (odiststream& s) const;
template <class GetFunction> idiststream& get_values (idiststream& ips, GetFunction get_element);
template <class PutFunction> odiststream& put_values (odiststream& ops, PutFunction put_element) const;
template <class PutFunction, class A2> odiststream& permuted_put_values (odiststream& ops, const array_rep<size_type,distributed,A2>& perm,
PutFunction put_element) const;
void dump (std::string name) const;
protected:
void set_dis_entry (size_type dis_i, const T& val);
template<class U>
void set_add_dis_entry (size_type dis_i, const U& val);
// typedefs:
/** 1) stash: store data before assembly() communications:
* select multimap<U> when T=set<U> and map<T> otherwise
*/
template<class Pair>
struct remove_const_in_pair {
typedef Pair type;
};
template<class T1, class T2>
struct remove_const_in_pair<std::pair<T1,T2> > {
typedef std::pair<typename boost::remove_const<T1>::type,
typename boost::remove_const<T2>::type> type;
};
template<class U, class IsContainer> struct stash_traits {};
template<class U>
struct stash_traits<U,boost::mpl::false_> {
typedef U mapped_type;
typedef std::map <size_type, U, std::less<size_type>, heap_allocator<std::pair<size_type,U> > > map_type;
};
template<class U>
struct stash_traits<U,boost::mpl::true_> {
typedef typename remove_const_in_pair<typename U::value_type>::type mapped_type;
typedef std::multimap <size_type, mapped_type, std::less<size_type>, heap_allocator<std::pair<size_type,mapped_type> > > map_type;
};
typedef typename is_container_of_mpi_datatype<T>::type is_container;
typedef typename stash_traits<T,is_container>::mapped_type stash_value;
typedef typename stash_traits<T,is_container>::map_type stash_map_type;
/** 2) message: for communication during assembly_begin(), assembly_end()
*/
struct message_type {
std::list<std::pair<size_type,mpi::request>,A> waits;
std::vector<std::pair<size_type,stash_value>,A> data;
};
/** 3) scatter (get_entry): specialized versions for T=container and T=simple type
*/
template<class Set, class Map>
void append_dis_entry (const Set& ext_idx_set, Map& ext_idx_map, boost::mpl::true_) const;
template<class Set, class Map>
void append_dis_entry (const Set& ext_idx_set, Map& ext_idx_map, boost::mpl::false_) const;
// data:
stash_map_type _stash; // for assembly msgs:
message_type _send;
message_type _receive;
size_type _receive_max_size;
mutable scatter_map_type _ext_x; // for ext values (scatter)
};
#endif // _RHEOLEF_HAVE_MPI
// -------------------------------------------------------------
// the basic class with a smart pointer to representation
// the user-level class with memory-model parameter
// -------------------------------------------------------------
/*Class:array
NAME: @code{array} - container in distributed environment (@PACKAGE@-@VERSION@)
SYNOPSYS:
STL-like vector container for a distributed memory machine model.
EXAMPLE:
A sample usage of the class is:
@example
int main(int argc, char**argv) @{
environment distributed(argc, argv);
array<double> x(distributor(100), 3.14);
dout << x << endl;
@}
@end example
The array<T> interface is similar to those of the std::vector<T> with the
addition of some communication features in the distributed case:
write accesses with entry/assembly and read access with dis_at.
DISTRIBUTED WRITE ACCESS:
Loop on any @code{dis_i} that is not managed by the current processor:
@example
x.dis_entry (dis_i) = value;
@end example
and then, after loop, perform all communication:
@example
x.dis_entry_assembly();
@end example
After this command, each value is stored in the array, available the processor
associated to @code{dis_i}.
DISTRIBUTED READ ACCESS:
First, define the set of indexes:
@example
std::set<size_t> ext_idx_set;
@end example
Then, loop on @code{dis_i} indexes that are not managed by the current processor:
@example
ext_idx_set.insert (dis_i);
@end example
After the loop, performs the communications:
@example
x.set_dis_indexes (ext_idx_set);
@end example
After this command, each values associated to the @code{dis_i} index,
and that belongs to the index set, is now available also on the
current processor as:
@example
value = x.dis_at (dis_i);
@end example
For convenience, if @code{dis_i} is managed by the current processor, this
function returns also the value.
NOTE:
The class takes two template parameters: one for the type T and the second
for the memory model M, that could be either M=distributed or M=sequential.
The two cases are associated to two diferent implementations, but proposes
exactly the same interface. The sequential interface propose also a supplementary
constructor:
@example
array<double,sequential> x(local_size, init_val);
@end example
This constructor is a STL-like one but could be consufused in the distributed case,
since there are two sizes: a local one and a global one. In that case, the use
of the distributor, as a generalization of the size concept, clarify the situation
(@pxref{distributor class}).
IMPLEMENTATION NOTE:
"scatter" via "get_dis_entry".
"gather" via "dis_entry(dis_i) = value"
or "dis_entry(dis_i) += value". Note that += applies when T=idx_set where
idx_set is a wrapper class of std::set<size_t> ; the += operator represents the
union of a set. The operator= is used when T=double or others simple T types
without algebra. If there is a conflict, i.e. several processes set the dis_i
index, then the result of operator+= depends upon the order of the process at
each run and is not deterministic. Such ambiguous behavior is not detected
yet at run time.
AUTHOR: Pierre.Saramito@imag.fr
End:
*/
template <class T, class M = rheo_default_memory_model, class A = std::allocator<T> >
class array {
public:
typedef M memory_type;
typedef typename std::vector<T,A>::size_type size_type;
typedef typename std::vector<T,A>::iterator iterator;
typedef typename std::vector<T,A>::const_iterator const_iterator;
};
//<verbatim:
template <class T, class A>
class array<T,sequential,A> : public smart_pointer<array_rep<T,sequential,A> > {
public:
// typedefs:
typedef array_rep<T,sequential,A> rep;
typedef smart_pointer<rep> base;
typedef sequential memory_type;
typedef typename rep::size_type size_type;
typedef typename rep::difference_type difference_type;
typedef typename rep::value_type value_type;
typedef typename rep::reference reference;
typedef typename rep::dis_reference dis_reference;
typedef typename rep::iterator iterator;
typedef typename rep::const_reference const_reference;
typedef typename rep::const_iterator const_iterator;
// allocators:
array (size_type loc_size = 0, const T& init_val = T(), const A& alloc = A());
void resize (size_type loc_size = 0, const T& init_val = T());
array (const distributor& ownership, const T& init_val = T(), const A& alloc = A());
void resize (const distributor& ownership, const T& init_val = T());
// local accessors & modifiers:
A get_allocator() const { return base::data().get_allocator(); }
size_type size () const { return base::data().size(); }
size_type dis_size () const { return base::data().dis_size(); }
const distributor& ownership() const { return base::data().ownership(); }
const communicator& comm() const { return ownership().comm(); }
reference operator[] (size_type i) { return base::data().operator[] (i); }
const_reference operator[] (size_type i) const { return base::data().operator[] (i); }
reference operator() (size_type i) { return base::data().operator[] (i); }
const_reference operator() (size_type i) const { return base::data().operator[] (i); }
const_reference dis_at (size_type dis_i) const { return operator[] (dis_i); }
iterator begin() { return base::data().begin(); }
const_iterator begin() const { return base::data().begin(); }
iterator end() { return base::data().end(); }
const_iterator end() const { return base::data().end(); }
// global modifiers (for compatibility with distributed interface):
dis_reference dis_entry (size_type dis_i) { return base::data().dis_entry(dis_i); }
template<class SetOp = typename default_set_op<T>::type>
void dis_entry_assembly (SetOp my_set_op = SetOp()) {}
template<class SetOp = typename default_set_op<T>::type>
void dis_entry_assembly_begin (SetOp my_set_op = SetOp()) {}
template<class SetOp = typename default_set_op<T>::type>
void dis_entry_assembly_end (SetOp my_set_op = SetOp()) {}
void dis_entry_assembly_begin() {}
void dis_entry_assembly_end() {}
void dis_entry_assembly() {}
void reset_dis_indexes() const {}
template<class Set> void set_dis_indexes (const Set& ext_idx_set) const {}
template<class Set> void append_dis_indexes (const Set& ext_idx_set) const {}
template<class Set, class Map> void append_dis_entry (const Set& ext_idx_set, Map& ext_idx_map) const {}
template<class Set, class Map> void get_dis_entry (const Set& ext_idx_set, Map& ext_idx_map) const {}
// apply a partition:
template<class RepSize>
void repartition ( // old_numbering for *this
const RepSize& partition, // old_ownership
array<T,sequential,A>& new_array, // new_ownership (created)
RepSize& old_numbering, // new_ownership
RepSize& new_numbering) const // old_ownership
{ return base::data().repartition (partition, new_array, old_numbering, new_numbering); }
template<class RepSize>
void permutation_apply ( // old_numbering for *this
const RepSize& new_numbering, // old_ownership
array<T,sequential,A>& new_array) const // new_ownership (already allocated)
{ return base::data().permutation_apply (new_numbering, new_array); }
void reverse_permutation ( // old_ownership for *this=iold2dis_inew
array<size_type,sequential,A>& inew2dis_iold) const // new_ownership
{ base::data().reverse_permutation (inew2dis_iold.data()); }
// i/o:
odiststream& put_values (odiststream& ops) const { return base::data().put_values(ops); }
idiststream& get_values (idiststream& ips) { return base::data().get_values(ips); }
template <class GetFunction>
idiststream& get_values (idiststream& ips, GetFunction get_element) { return base::data().get_values(ips, get_element); }
template <class PutFunction>
odiststream& put_values (odiststream& ops, PutFunction put_element) const { return base::data().put_values(ops, put_element); }
void dump (std::string name) const { return base::data().dump(name); }
};
//>verbatim:
template <class T, class A>
inline
array<T,sequential,A>::array (
size_type loc_size,
const T& init_val,
const A& alloc)
: base(new_macro(rep(loc_size,init_val,alloc)))
{
}
template <class T, class A>
inline
array<T,sequential,A>::array (
const distributor& ownership,
const T& init_val,
const A& alloc)
: base(new_macro(rep(ownership,init_val,alloc)))
{
}
template <class T, class A>
inline
void
array<T,sequential,A>::resize (
size_type loc_size,
const T& init_val)
{
base::data().resize (loc_size,init_val);
}
template <class T, class A>
inline
void
array<T,sequential,A>::resize (
const distributor& ownership,
const T& init_val)
{
base::data().resize (ownership,init_val);
}
#ifdef _RHEOLEF_HAVE_MPI
//<verbatim:
template <class T, class A>
class array<T,distributed,A> : public smart_pointer<array_rep<T,distributed,A> > {
public:
// typedefs:
typedef array_rep<T,distributed,A> rep;
typedef smart_pointer<rep> base;
typedef distributed memory_type;
typedef typename rep::size_type size_type;
typedef typename rep::difference_type difference_type;
typedef typename rep::value_type value_type;
typedef typename rep::reference reference;
typedef typename rep::dis_reference dis_reference;
typedef typename rep::iterator iterator;
typedef typename rep::const_reference const_reference;
typedef typename rep::const_iterator const_iterator;
typedef typename rep::scatter_map_type scatter_map_type;
// allocators:
array (const distributor& ownership = distributor(), const T& init_val = T(), const A& alloc = A());
void resize (const distributor& ownership = distributor(), const T& init_val = T());
// local accessors & modifiers:
A get_allocator() const { return base::data().get_allocator(); }
size_type size () const { return base::data().size(); }
size_type dis_size () const { return base::data().dis_size(); }
const distributor& ownership() const { return base::data().ownership(); }
const communicator& comm() const { return base::data().comm(); }
reference operator[] (size_type i) { return base::data().operator[] (i); }
const_reference operator[] (size_type i) const { return base::data().operator[] (i); }
reference operator() (size_type i) { return base::data().operator[] (i); }
const_reference operator() (size_type i) const { return base::data().operator[] (i); }
iterator begin() { return base::data().begin(); }
const_iterator begin() const { return base::data().begin(); }
iterator end() { return base::data().end(); }
const_iterator end() const { return base::data().end(); }
// global accessor:
template<class Set, class Map>
void append_dis_entry (const Set& ext_idx_set, Map& ext_idx_map) const { base::data().append_dis_entry (ext_idx_set, ext_idx_map); }
template<class Set, class Map>
void get_dis_entry (const Set& ext_idx_set, Map& ext_idx_map) const { base::data().get_dis_entry (ext_idx_set, ext_idx_map); }
template<class Set>
void append_dis_indexes (const Set& ext_idx_set) const { base::data().append_dis_indexes (ext_idx_set); }
void reset_dis_indexes() const { base::data().reset_dis_indexes(); }
template<class Set>
void set_dis_indexes (const Set& ext_idx_set) const { base::data().set_dis_indexes (ext_idx_set); }
const T& dis_at (size_type dis_i) const { return base::data().dis_at (dis_i); }
// get all external pairs (dis_i, values):
const scatter_map_type& get_dis_map_entries() const { return base::data().get_dis_map_entries(); }
// global modifiers (for compatibility with distributed interface):
dis_reference dis_entry (size_type dis_i) { return base::data().dis_entry(dis_i); }
template<class SetOp = typename default_set_op<T>::type>
void dis_entry_assembly_begin (SetOp my_set_op = SetOp()) { base::data().dis_entry_assembly_begin (my_set_op); }
template<class SetOp = typename default_set_op<T>::type>
void dis_entry_assembly_end (SetOp my_set_op = SetOp()) { base::data().dis_entry_assembly_end (my_set_op); }
template<class SetOp = typename default_set_op<T>::type>
void dis_entry_assembly (SetOp my_set_op = SetOp()) { base::data().dis_entry_assembly (my_set_op); }
void dis_entry_assembly_begin() { base::data().template dis_entry_assembly_begin<typename default_set_op<T>::type>(); }
void dis_entry_assembly_end() { base::data().template dis_entry_assembly_end<typename default_set_op<T>::type>(); }
void dis_entry_assembly() { dis_entry_assembly_begin(); dis_entry_assembly_end(); }
// apply a partition:
template<class RepSize>
void repartition ( // old_numbering for *this
const RepSize& partition, // old_ownership
array<T,distributed>& new_array, // new_ownership (created)
RepSize& old_numbering, // new_ownership
RepSize& new_numbering) const // old_ownership
{ return base::data().repartition (partition.data(), new_array.data(), old_numbering.data(), new_numbering.data()); }
template<class RepSize>
void permutation_apply ( // old_numbering for *this
const RepSize& new_numbering, // old_ownership
array<T,distributed,A>& new_array) const // new_ownership (already allocated)
{ base::data().permutation_apply (new_numbering.data(), new_array.data()); }
void reverse_permutation ( // old_ownership for *this=iold2dis_inew
array<size_type,distributed,A>& inew2dis_iold) const // new_ownership
{ base::data().reverse_permutation (inew2dis_iold.data()); }
// i/o:
odiststream& put_values (odiststream& ops) const { return base::data().put_values(ops); }
idiststream& get_values (idiststream& ips) { return base::data().get_values(ips); }
void dump (std::string name) const { return base::data().dump(name); }
template <class GetFunction>
idiststream& get_values (idiststream& ips, GetFunction get_element) { return base::data().get_values(ips, get_element); }
template <class PutFunction>
odiststream& put_values (odiststream& ops, PutFunction put_element) const { return base::data().put_values(ops, put_element); }
template <class PutFunction, class A2> odiststream& permuted_put_values (
odiststream& ops, const array<size_type,distributed,A2>& perm, PutFunction put_element) const
{ return base::data().permuted_put_values (ops, perm.data(), put_element); }
};
//>verbatim:
template <class T, class A>
inline
array<T,distributed,A>::array (
const distributor& ownership,
const T& init_val,
const A& alloc)
: base(new_macro(rep(ownership,init_val,alloc)))
{
}
template <class T, class A>
inline
void
array<T,distributed,A>::resize (
const distributor& ownership,
const T & init_val)
{
base::data().resize (ownership,init_val);
}
#endif // _RHEOLEF_HAVE_MPI
// -------------------------------------------------------------
// i/o with operator<< & >>
// -------------------------------------------------------------
template <class T, class A>
inline
idiststream&
operator >> (idiststream& ips, array<T,sequential,A>& x)
{
return x.get_values(ips);
}
template <class T, class A>
inline
odiststream&
operator << (odiststream& ops, const array<T,sequential,A>& x)
{
return x.put_values(ops);
}
#ifdef _RHEOLEF_HAVE_MPI
template <class T, class A>
inline
idiststream&
operator >> (idiststream& ips, array<T,distributed,A>& x)
{
return x.get_values(ips);
}
template <class T, class A>
inline
odiststream&
operator << (odiststream& ops, const array<T,distributed,A>& x)
{
return x.put_values(ops);
}
#endif // _RHEOLEF_HAVE_MPI
} // namespace rheolef
// -------------------------------------------------------------
// not inlined : longer code
// -------------------------------------------------------------
#include "rheolef/array_seq.icc"
#include "rheolef/array_mpi.icc"
#endif // _RHEO_ARRAY_H
|