This file is indexed.

/usr/include/ql/math/functional.hpp is in libquantlib0-dev 1.7.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2003 RiskMap srl

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file functional.hpp
    \brief functionals and combinators not included in the STL
*/

#ifndef quantlib_functional_hpp
#define quantlib_functional_hpp

#include <ql/types.hpp>
#include <cmath>
#include <functional>

namespace QuantLib {

    // functions

    template <class T, class U>
    class constant : public std::unary_function<T,U> {
      public:
        constant(const U& u) : u_(u) {}
        U operator()(const T&) const { return u_; }
      private:
        U u_;
    };

    template <class T>
    class identity : public std::unary_function<T,T> {
      public:
        T operator()(const T& t) const { return t; }
    };

    template <class T>
    class square : public std::unary_function<T,T> {
      public:
        T operator()(const T& t) const { return t*t; }
    };

    template <class T>
    class cube : public std::unary_function<T,T> {
      public:
        T operator()(const T& t) const { return t*t*t; }
    };

    template <class T>
    class fourth_power : public std::unary_function<T,T> {
      public:
        T operator()(const T& t) const { T t2 = t*t; return t2*t2; }
    };

    // predicates

    class everywhere : public constant<Real,bool> {
      public:
        everywhere() : constant<Real,bool>(true) {}
    };

    class nowhere : public constant<Real,bool> {
      public:
        nowhere() : constant<Real,bool>(false) {}
    };

    template <class T>
    class equal_within : public std::binary_function<T, T, bool> {
      public:
        equal_within(const T& eps) : eps_(eps) {}
        bool operator()(const T a, const T b) const {
            return std::fabs(a-b) <= eps_;
        }
      private:
        const T eps_;
    };

    // combinators
    template <class F, class R>
    class clipped_function {
      public:
        typedef typename F::argument_type argument_type;
        typedef typename F::result_type result_type;
        clipped_function(const F& f, const R& r) : f_(f), r_(r) {}
        result_type operator()(const argument_type& x) const {
            return r_(x) ? f_(x) : result_type();
        }
      private:
        F f_;
        R r_;
    };

    template <class F, class R>
    clipped_function<F,R> clip(const F& f, const R& r) {
        return clipped_function<F,R>(f,r);
    }


    template <class F, class G>
    class composed_function {
      public:
        typedef typename G::argument_type argument_type;
        typedef typename F::result_type result_type;
        composed_function(const F& f, const G& g) : f_(f), g_(g) {}
        result_type operator()(const argument_type& x) const {
            return f_(g_(x));
        }
      private:
        F f_;
        G g_;
    };

    template <class F, class G>
    composed_function<F,G> compose(const F& f, const G& g) {
        return composed_function<F,G>(f,g);
    }

    template <class F, class G, class H>
    class binary_compose3_function :
        public std::binary_function<typename G::argument_type,
                                    typename H::argument_type,
                                    typename F::result_type>{
      public:
        typedef typename G::argument_type first_argument_type;
        typedef typename H::argument_type second_argument_type;
        typedef typename F::result_type result_type;

        binary_compose3_function(const F& f, const G& g, const H& h)
        : f_(f), g_(g), h_(h) {}

        result_type operator()(const first_argument_type&  x,
                               const second_argument_type& y) const {
            return f_(g_(x), h_(y));
        }

      private:
        F f_;
        G g_;
        H h_;
    };

    template <class F, class G, class H> binary_compose3_function<F, G, H>
    compose3(const F& f, const G& g, const H& h) {
        return binary_compose3_function<F, G, H>(f, g, h);
    }
}


#endif