This file is indexed.

/usr/include/ql/experimental/mcbasket/mclongstaffschwartzpathengine.hpp is in libquantlib0-dev 1.7.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2009 Andrea Odetti

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#ifndef quantlib_mc_longstaff_schwartz_path_engine_hpp
#define quantlib_mc_longstaff_schwartz_path_engine_hpp

#include <ql/pricingengines/mcsimulation.hpp>
#include <ql/experimental/mcbasket/longstaffschwartzmultipathpricer.hpp>

namespace QuantLib {

    //! Longstaff-Schwarz Monte Carlo engine for early exercise options
    /*! References:

        Francis Longstaff, Eduardo Schwartz, 2001. Valuing American Options
        by Simulation: A Simple Least-Squares Approach, The Review of
        Financial Studies, Volume 14, No. 1, 113-147

        \test the correctness of the returned value is tested by
              reproducing results available in web/literature
    */
    template <class GenericEngine, template <class> class MC,
              class RNG, class S = Statistics>
    class MCLongstaffSchwartzPathEngine : public GenericEngine,
                                      public McSimulation<MC,RNG,S> {
      public:
        typedef typename MC<RNG>::path_type path_type;
        typedef typename McSimulation<MC,RNG,S>::stats_type
            stats_type;
        typedef typename McSimulation<MC,RNG,S>::path_pricer_type
            path_pricer_type;
        typedef typename McSimulation<MC,RNG,S>::path_generator_type
            path_generator_type;

        MCLongstaffSchwartzPathEngine(
            const boost::shared_ptr<StochasticProcess>& process,
            Size timeSteps,
            Size timeStepsPerYear,
            bool brownianBridge,
            bool antitheticVariate,
            bool controlVariate,
            Size requiredSamples,
            Real requiredTolerance,
            Size maxSamples,
            BigNatural seed,
            Size nCalibrationSamples = Null<Size>());

        void calculate() const;

      protected:
        virtual boost::shared_ptr<LongstaffSchwartzMultiPathPricer> 
                                                    lsmPathPricer() const = 0;

        TimeGrid timeGrid() const;
        boost::shared_ptr<path_pricer_type> pathPricer() const;
        boost::shared_ptr<path_generator_type> pathGenerator() const;

        boost::shared_ptr<StochasticProcess> process_;
        const Size timeSteps_;
        const Size timeStepsPerYear_;
        const bool brownianBridge_;
        const Size requiredSamples_;
        const Real requiredTolerance_;
        const Size maxSamples_;
        const Size seed_;
        const Size nCalibrationSamples_;

        mutable boost::shared_ptr<LongstaffSchwartzMultiPathPricer> pathPricer_;
    };

    template <class GenericEngine, template <class> class MC,
              class RNG, class S>
    inline MCLongstaffSchwartzPathEngine<GenericEngine,MC,RNG,S>::
    MCLongstaffSchwartzPathEngine(
            const boost::shared_ptr<StochasticProcess>& process,
            Size timeSteps,
            Size timeStepsPerYear,
            bool brownianBridge,
            bool antitheticVariate,
            bool controlVariate,
            Size requiredSamples,
            Real requiredTolerance,
            Size maxSamples,
            BigNatural seed,
            Size nCalibrationSamples)
    : McSimulation<MC,RNG,S> (antitheticVariate, controlVariate),
      process_            (process),
      timeSteps_          (timeSteps),
      timeStepsPerYear_   (timeStepsPerYear),
      brownianBridge_     (brownianBridge),
      requiredSamples_    (requiredSamples),
      requiredTolerance_  (requiredTolerance),
      maxSamples_         (maxSamples),
      seed_               (seed),
      nCalibrationSamples_( (nCalibrationSamples == Null<Size>())
                            ? 2048 : nCalibrationSamples) {
        QL_REQUIRE(timeSteps != Null<Size>() ||
                   timeStepsPerYear != Null<Size>(),
                   "no time steps provided");
        QL_REQUIRE(timeSteps == Null<Size>() ||
                   timeStepsPerYear == Null<Size>(),
                   "both time steps and time steps per year were provided");
        QL_REQUIRE(timeSteps != 0,
                   "timeSteps must be positive, " << timeSteps <<
                   " not allowed");
        QL_REQUIRE(timeStepsPerYear != 0,
                   "timeStepsPerYear must be positive, " 
                    << timeStepsPerYear << " not allowed");
        this->registerWith(process_);
    }

    template <class GenericEngine, template <class> class MC,
              class RNG, class S>
    inline
    boost::shared_ptr<typename
        MCLongstaffSchwartzPathEngine<GenericEngine,MC,RNG,S>::path_pricer_type>
        MCLongstaffSchwartzPathEngine<GenericEngine,MC,RNG,S>::pathPricer() 
        const {

        QL_REQUIRE(pathPricer_, "path pricer unknown");
        return pathPricer_;
    }

    template <class GenericEngine, template <class> class MC,
              class RNG, class S>
    inline
    void MCLongstaffSchwartzPathEngine<GenericEngine,MC,RNG,S>::calculate() 
    const {
        pathPricer_ = this->lsmPathPricer();
        this->mcModel_ = boost::shared_ptr<MonteCarloModel<MC,RNG,S> >(
                          new MonteCarloModel<MC,RNG,S>
                              (pathGenerator(), pathPricer_,
                               stats_type(), this->antitheticVariate_));

        this->mcModel_->addSamples(nCalibrationSamples_);
        this->pathPricer_->calibrate();

        McSimulation<MC,RNG,S>::calculate(requiredTolerance_,
                                          requiredSamples_,
                                          maxSamples_);
        this->results_.value = this->mcModel_->sampleAccumulator().mean();
        if (RNG::allowsErrorEstimate) {
            this->results_.errorEstimate =
                this->mcModel_->sampleAccumulator().errorEstimate();
        }
    }

    template <class GenericEngine, template <class> class MC,
              class RNG, class S>
    inline
    TimeGrid MCLongstaffSchwartzPathEngine<GenericEngine,MC,RNG,S>::timeGrid()
        const {
        const std::vector<Date> & fixings = this->arguments_.fixingDates;
        const Size numberOfFixings = fixings.size();

        std::vector<Time> fixingTimes(numberOfFixings);
        for (Size i = 0; i < numberOfFixings; ++i) {
            fixingTimes[i] =
                this->process_->time(fixings[i]);
        }

        const Size numberOfTimeSteps = timeSteps_ != Null<Size>() ? timeSteps_ : timeStepsPerYear_ * fixingTimes.back();

        return TimeGrid(fixingTimes.begin(), fixingTimes.end(), numberOfTimeSteps);
     }

    template <class GenericEngine, template <class> class MC,
              class RNG, class S>
    inline
    boost::shared_ptr<typename
    MCLongstaffSchwartzPathEngine<GenericEngine,MC,RNG,S>::path_generator_type>
    MCLongstaffSchwartzPathEngine<GenericEngine,MC,RNG,S>::pathGenerator() 
    const {

        Size dimensions = process_->factors();
        TimeGrid grid = this->timeGrid();
        typename RNG::rsg_type generator =
            RNG::make_sequence_generator(dimensions*(grid.size()-1),seed_);
        return boost::shared_ptr<path_generator_type>(
                   new path_generator_type(process_,
                                           grid, generator, brownianBridge_));
    }
}


#endif