/usr/include/ql/experimental/mcbasket/mclongstaffschwartzpathengine.hpp is in libquantlib0-dev 1.7.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2009 Andrea Odetti
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#ifndef quantlib_mc_longstaff_schwartz_path_engine_hpp
#define quantlib_mc_longstaff_schwartz_path_engine_hpp
#include <ql/pricingengines/mcsimulation.hpp>
#include <ql/experimental/mcbasket/longstaffschwartzmultipathpricer.hpp>
namespace QuantLib {
//! Longstaff-Schwarz Monte Carlo engine for early exercise options
/*! References:
Francis Longstaff, Eduardo Schwartz, 2001. Valuing American Options
by Simulation: A Simple Least-Squares Approach, The Review of
Financial Studies, Volume 14, No. 1, 113-147
\test the correctness of the returned value is tested by
reproducing results available in web/literature
*/
template <class GenericEngine, template <class> class MC,
class RNG, class S = Statistics>
class MCLongstaffSchwartzPathEngine : public GenericEngine,
public McSimulation<MC,RNG,S> {
public:
typedef typename MC<RNG>::path_type path_type;
typedef typename McSimulation<MC,RNG,S>::stats_type
stats_type;
typedef typename McSimulation<MC,RNG,S>::path_pricer_type
path_pricer_type;
typedef typename McSimulation<MC,RNG,S>::path_generator_type
path_generator_type;
MCLongstaffSchwartzPathEngine(
const boost::shared_ptr<StochasticProcess>& process,
Size timeSteps,
Size timeStepsPerYear,
bool brownianBridge,
bool antitheticVariate,
bool controlVariate,
Size requiredSamples,
Real requiredTolerance,
Size maxSamples,
BigNatural seed,
Size nCalibrationSamples = Null<Size>());
void calculate() const;
protected:
virtual boost::shared_ptr<LongstaffSchwartzMultiPathPricer>
lsmPathPricer() const = 0;
TimeGrid timeGrid() const;
boost::shared_ptr<path_pricer_type> pathPricer() const;
boost::shared_ptr<path_generator_type> pathGenerator() const;
boost::shared_ptr<StochasticProcess> process_;
const Size timeSteps_;
const Size timeStepsPerYear_;
const bool brownianBridge_;
const Size requiredSamples_;
const Real requiredTolerance_;
const Size maxSamples_;
const Size seed_;
const Size nCalibrationSamples_;
mutable boost::shared_ptr<LongstaffSchwartzMultiPathPricer> pathPricer_;
};
template <class GenericEngine, template <class> class MC,
class RNG, class S>
inline MCLongstaffSchwartzPathEngine<GenericEngine,MC,RNG,S>::
MCLongstaffSchwartzPathEngine(
const boost::shared_ptr<StochasticProcess>& process,
Size timeSteps,
Size timeStepsPerYear,
bool brownianBridge,
bool antitheticVariate,
bool controlVariate,
Size requiredSamples,
Real requiredTolerance,
Size maxSamples,
BigNatural seed,
Size nCalibrationSamples)
: McSimulation<MC,RNG,S> (antitheticVariate, controlVariate),
process_ (process),
timeSteps_ (timeSteps),
timeStepsPerYear_ (timeStepsPerYear),
brownianBridge_ (brownianBridge),
requiredSamples_ (requiredSamples),
requiredTolerance_ (requiredTolerance),
maxSamples_ (maxSamples),
seed_ (seed),
nCalibrationSamples_( (nCalibrationSamples == Null<Size>())
? 2048 : nCalibrationSamples) {
QL_REQUIRE(timeSteps != Null<Size>() ||
timeStepsPerYear != Null<Size>(),
"no time steps provided");
QL_REQUIRE(timeSteps == Null<Size>() ||
timeStepsPerYear == Null<Size>(),
"both time steps and time steps per year were provided");
QL_REQUIRE(timeSteps != 0,
"timeSteps must be positive, " << timeSteps <<
" not allowed");
QL_REQUIRE(timeStepsPerYear != 0,
"timeStepsPerYear must be positive, "
<< timeStepsPerYear << " not allowed");
this->registerWith(process_);
}
template <class GenericEngine, template <class> class MC,
class RNG, class S>
inline
boost::shared_ptr<typename
MCLongstaffSchwartzPathEngine<GenericEngine,MC,RNG,S>::path_pricer_type>
MCLongstaffSchwartzPathEngine<GenericEngine,MC,RNG,S>::pathPricer()
const {
QL_REQUIRE(pathPricer_, "path pricer unknown");
return pathPricer_;
}
template <class GenericEngine, template <class> class MC,
class RNG, class S>
inline
void MCLongstaffSchwartzPathEngine<GenericEngine,MC,RNG,S>::calculate()
const {
pathPricer_ = this->lsmPathPricer();
this->mcModel_ = boost::shared_ptr<MonteCarloModel<MC,RNG,S> >(
new MonteCarloModel<MC,RNG,S>
(pathGenerator(), pathPricer_,
stats_type(), this->antitheticVariate_));
this->mcModel_->addSamples(nCalibrationSamples_);
this->pathPricer_->calibrate();
McSimulation<MC,RNG,S>::calculate(requiredTolerance_,
requiredSamples_,
maxSamples_);
this->results_.value = this->mcModel_->sampleAccumulator().mean();
if (RNG::allowsErrorEstimate) {
this->results_.errorEstimate =
this->mcModel_->sampleAccumulator().errorEstimate();
}
}
template <class GenericEngine, template <class> class MC,
class RNG, class S>
inline
TimeGrid MCLongstaffSchwartzPathEngine<GenericEngine,MC,RNG,S>::timeGrid()
const {
const std::vector<Date> & fixings = this->arguments_.fixingDates;
const Size numberOfFixings = fixings.size();
std::vector<Time> fixingTimes(numberOfFixings);
for (Size i = 0; i < numberOfFixings; ++i) {
fixingTimes[i] =
this->process_->time(fixings[i]);
}
const Size numberOfTimeSteps = timeSteps_ != Null<Size>() ? timeSteps_ : timeStepsPerYear_ * fixingTimes.back();
return TimeGrid(fixingTimes.begin(), fixingTimes.end(), numberOfTimeSteps);
}
template <class GenericEngine, template <class> class MC,
class RNG, class S>
inline
boost::shared_ptr<typename
MCLongstaffSchwartzPathEngine<GenericEngine,MC,RNG,S>::path_generator_type>
MCLongstaffSchwartzPathEngine<GenericEngine,MC,RNG,S>::pathGenerator()
const {
Size dimensions = process_->factors();
TimeGrid grid = this->timeGrid();
typename RNG::rsg_type generator =
RNG::make_sequence_generator(dimensions*(grid.size()-1),seed_);
return boost::shared_ptr<path_generator_type>(
new path_generator_type(process_,
grid, generator, brownianBridge_));
}
}
#endif
|