/usr/include/ql/experimental/credit/saddlepointlossmodel.hpp is in libquantlib0-dev 1.7.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2014 Jose Aparicio
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#ifndef quantlib_saddle_point_lossmodel_hpp
#define quantlib_saddle_point_lossmodel_hpp
#include <ql/math/solvers1d/brent.hpp>
#include <ql/math/solvers1d/newton.hpp>
#include <ql/experimental/credit/basket.hpp>
#include <ql/experimental/credit/defaultlossmodel.hpp>
#include <ql/experimental/credit/constantlosslatentmodel.hpp>
namespace QuantLib {
/*! \brief Saddle point portfolio credit default loss model.\par
Default Loss model implementing the Saddle point expansion
integrations on several default risk metrics. Codepence is dealt
through a latent model making the integrals conditional to the latent
model factor. Latent variables are integrated indirectly.\par
See:\par
<b>Taking to the saddle</b> by R.Martin, K.Thompson and C.Browne; RISK JUNE
2001; p.91\par
<b>The saddlepoint method and portfolio optionalities</b> R.Martin in Risk
December 2006\par
<b>VAR: who contributes and how much?</b> R.Martin, K.Thompson and
C.Browne RISK AUGUST 2001\par
<b>Shortfall: Who contributes and how much?</b> R. J. Martin, Credit Suisse
January 3, 2007 \par
<b>Don�t Fall from the Saddle: the Importance of Higher Moments of Credit
Loss Distributions</b> J.Annaert, C.Garcia Joao Batista, J.Lamoot,
G.Lanine February 2006, Gent University\par
<b>Analytical techniques for synthetic CDOs and credit default risk
measures</b> A. Antonov, S. Mechkovy, and T. Misirpashaevz;
NumeriX May 23, 2005 \par
<b>Computation of VaR and VaR contribution in the Vasicek portfolio credit
loss model: a comparative study</b> X.Huang, C.W.Oosterlee, M.Mesters
Journal of Credit Risk (75�96) Volume 3/ Number 3, Fall 2007 \par
<b>Higher-order saddlepoint approximations in the Vasicek portfolio credit
loss model</b> X.Huang, C.W.Oosterlee, M.Mesters Journal of
Computational Finance (93�113) Volume 11/Number 1, Fall 2007 \par
While more expensive, a high order expansion is used here; see the paper by
Antonov et al for the terms retained.\par
For a discussion of an alternative to fix the error at low loss levels
(more relevant to pricing than risk metrics) see: \par
<b>The hybrid saddlepoint method for credit portfolios</b> by A.Owen,
A.McLeod and K.Thompson; in Risk, August 2009. This is not implemented here
though (yet?...)\par
For the more general context mathematical theory see: <b>Saddlepoint
approximations with applications</b> by R.W. Butler, Cambridge series in
statistical and probabilistic mathematics. 2007 \par
\todo Some portfolios show instabilities in the high order expansion terms.
\todo Methods here are calling and integrating using the unconditional
probabilities without inverting them first; quite a lot of calls to
the copula inversion can be avoided; this should improve performance.
\todo Revise the model for stability of the saddle point calculation. The
search for the point does not convege in extreme cases; e.g. very high
value of all the factors; factors for each variable not ordered from
high to low,...
*/
/* The treatment of recovery wont work with random recoveries, they should
be passed to the conditional methods in the same way as the probabilities.
*/
/*
TO DO:
-> Failing when the tranche upper loss limit goes over the max attainable
loss.
- With 15 quadrature points things are OK but 25 gives me -1#IND000 errors
(over region around the EL I think)
- Silly bug when calling some methods on todays date (zero time).
ProbDef = 0 there
- VaR <- tranched?????!
- ESF <- tranched????!!
- VaR split
- ESF split?
When introducing defaults; somewhere, (after an update?) there should be
a check that: copula_->basketSize() EQUALS remainingBasket_.size()
*/
template<class CP>
class SaddlePointLossModel : public DefaultLossModel {
public:
SaddlePointLossModel(
const boost::shared_ptr<ConstantLossLatentmodel<CP> >& m)
: copula_(m) { }
protected:
// ----------- Cumulants and derivatives auxiliary functions ---------
/*! Returns the cumulant generating function (zero-th order
expansion term) conditional to the mkt factor:
\f$ K = \sum_j ln(1-p_j + p_j e^{N_j \times lgd_j \times s}) \f$
*/
Real CumulantGeneratingCond(
const std::vector<Real>& invUncondProbs,
Real lossFraction,// saddle pt
const std::vector<Real>& mktFactor) const;
/*! Returns the first derivative of the cumulant generating function
(first order expansion term) conditional to the mkt factor:
\f$ K1 = \sum_j \frac{p_j \times N_j \times LGD_j \times
e^{N_j \times LGD_j \times s}} \
{1-p_j + p_j e^{N_j \times LGD_j \times s}} \f$
One of its properties is that its value at zero is the portfolio
expected loss (in fractional units). Its value at infinity is the
max attainable portfolio loss. To be understood conditional to the
market factor.
*/
Real CumGen1stDerivativeCond(
const std::vector<Real>& invUncondProbs,
Real saddle, // in fract loss units... humm not really
const std::vector<Real>& mktFactor) const;
/*! Returns the second derivative of the cumulant generating function
(first order expansion term) conditional to the mkt factor:
\f$ K2 = \sum_j \frac{p_j \times (N_j \times LGD_j)^2 \times
e^{N_j \times LGD_j \times s}}
{1-p_j + p_j e^{N_j \times LGD_j \times s}}
- (\frac{p_j \times N_j \times LGD_j \times e^{N_j \times
LGD_j \times s}}
{1-p_j + p_j e^{N_j \times LGD_j \times s}})^2 \f$
*/
Real CumGen2ndDerivativeCond(
const std::vector<Real>& invUncondProbs,
Real saddle,
const std::vector<Real>& mktFactor) const;
Real CumGen3rdDerivativeCond(
const std::vector<Real>& invUncondProbs,
Real saddle,
const std::vector<Real>& mktFactor) const;
Real CumGen4thDerivativeCond(
const std::vector<Real>& invUncondProbs,
Real saddle,
const std::vector<Real>& mktFactor) const ;
/*! Returns the cumulant and second to fourth derivatives together.
Included for optimization, most methods work on expansion of these
terms.
Alternatively use a local private buffer member? */
boost::tuples::tuple<Real, Real, Real, Real> CumGen0234DerivCond(
const std::vector<Real>& invUncondProbs,
Real saddle,
const std::vector<Real>& mktFactor) const;
boost::tuples::tuple<Real, Real> CumGen02DerivCond(
const std::vector<Real>& invUncondProbs,
Real saddle,
const std::vector<Real>& mktFactor) const;
/* Unconditional cumulants. Because this class integrates the various
statistics it provides in indirect mode they are never used.
Provided for completeness/extendability */
/*! Returns the cumulant generating function (zero-th order expansion
term) weighting the conditional value by the prob density of the
market factor, called by integrations */
Real CumulantGenerating(const Date& date, Real s) const;
Real CumGen1stDerivative(const Date& date, Real s) const;
Real CumGen2ndDerivative(const Date& date, Real s) const;
Real CumGen3rdDerivative(const Date& date, Real s) const;
Real CumGen4thDerivative(const Date& date, Real s) const;
// -------- Saddle point search functions ---------------------------
class SaddleObjectiveFunction :
public std::unary_function<Real, Real> {
const SaddlePointLossModel& me_;
Real targetValue_;
const std::vector<Real>& mktFactor_;
const std::vector<Real>& invUncondProbs_;
public:
//! @param target in fractional loss units
SaddleObjectiveFunction(const SaddlePointLossModel& me,
const Real target,
const std::vector<Real>& invUncondProbs,
const std::vector<Real>& mktFactor
)
: me_(me),
targetValue_(target),
mktFactor_(mktFactor),
invUncondProbs_(invUncondProbs)
{}
Real operator()(const Real x) const {
return me_.CumGen1stDerivativeCond(invUncondProbs_, x,
mktFactor_) - targetValue_;
}
Real derivative(Real x) const {
return me_.CumGen2ndDerivativeCond(invUncondProbs_, x,
mktFactor_);
}
};
/*! Calculates the mkt-fct-conditional saddle point for the loss level
given and the probability passed.
The date is implicitly given through the probability. Performance
requires to pass the probabilities for that date. Otherwise once we
integrate this over the market factor we would be computing the same
probabilities over and over. While this works fine here some models
of the recovery rate might require the date.
@param lossLevel in total portfolio loss fractional unit
\todo Improve convergence speed (which is bad at the moment).See
discussion in several places; references above and The Oxford
Handbook of CD, sect 2.9
*/
Real findSaddle(
const std::vector<Real>& invUncondProbs,
Real lossLevel,
const std::vector<Real>& mktFactor,
Real accuracy = 1.0e-3,//1.e-4
Natural maxEvaluations = 50
) const;
class SaddlePercObjFunction : public std::unary_function<Real, Real> {
const SaddlePointLossModel& me_;
Real targetValue_;
Date date_;
public:
SaddlePercObjFunction(
const SaddlePointLossModel& me,
const Real target,
const Date& date)
: me_(me), targetValue_(1.-target), date_(date) {}
/*!
@param x Is the _tranche_ loss fraction
*/
Real operator()(const Real x) const {
return me_.probOverLoss(date_, x) - targetValue_;
}
};
// Functionality, Provides various portfolio statistics---------------
public:
/*! Returns the loss amount at the requested date for which the
probability of lossing that amount or less is equal to the value passed.
*/
Real percentile(const Date& d, Probability percentile) const;
protected:
/*! Conditional (on the mkt factor) prob of a loss fraction of the the
tranched portfolio.
@param trancheLossFract Fraction over the tranche notional. In [0,1]
*/
Probability probOverLossCond(
const std::vector<Real>& invUncondProbs,
Real trancheLossFract,
const std::vector<Real>& mktFactor) const;
Probability probOverLossPortfCond1stOrder(
const std::vector<Real>& invUncondProbs,
Real loss,
const std::vector<Real>& mktFactor) const;
public:
Probability probOverLoss(const Date& d, Real trancheLossFract) const;
Disposable<std::map<Real, Probability> >
lossDistribution(const Date& d) const;
protected:
/*!
Probability of having losses in the portfolio due to default
events equal or larger than a given absolute loss value on a
given date conditional to the latent model factor.
The integral expression on the expansion is the first order
integration as presented in several references, see for instance;
equation 8 in R.Martin, K.Thompson, and C. Browne 's
'Taking to the Saddle', Risk Magazine, June 2001, page 91
@param loss loss in absolute value
*/
Probability probOverLossPortfCond(
const std::vector<Real>& invUncondProbs,
Real loss,
const std::vector<Real>& mktFactor) const;
public:
Probability probOverPortfLoss(const Date& d, Real loss) const;
Real expectedTrancheLoss(const Date& d) const;
protected:
/*!
Probability density of having losses in the total portfolio (untranched)
due to default events equal to a given value on a given date conditional
to the latent model factor.
Based on the integrals of the expected shortfall.
*/
Probability probDensityCond(const std::vector<Real>& invUncondProbs,
Real loss, const std::vector<Real>& mktFactor) const;
public:
Probability probDensity(const Date& d, Real loss) const;
protected:
Disposable<std::vector<Real> > splitLossCond(
const std::vector<Real>& invUncondProbs,
Real loss, std::vector<Real> mktFactor) const;
Real expectedShortfallFullPortfolioCond(
const std::vector<Real>& invUncondProbs,
Real lossPerc, const std::vector<Real>& mktFactor) const;
Real expectedShortfallTrancheCond(
const std::vector<Real>& invUncondProbs,
Real lossPerc, Probability percentile,
const std::vector<Real>& mktFactor) const;
Disposable<std::vector<Real> > expectedShortfallSplitCond(
const std::vector<Real>& invUncondProbs,
Real lossPerc, const std::vector<Real>& mktFactor) const;
public:
/*! Sensitivities of the individual names to a given portfolio loss
value due to defaults. It returns ratios to the total structure
notional, which aggregated add up to the requested loss value.
Notice then that it refers to the total portfolio, not the tranched
basket.
\todo Fix this.
\par
see equation 8 in <b>VAR: who contributes and how much?</b> by
R.Martin, K.Thompson, and C. Browne in Risk Magazine, August 2001
@param loss Loss amount level at which we want to request the
sensitivity. Equivalent to a percentile.
*/
Disposable<std::vector<Real> >
splitVaRLevel(const Date& date, Real loss) const;
Real expectedShortfall(const Date&d, Probability percentile) const;
protected:
Real conditionalExpectedLoss(
const std::vector<Real>& invUncondProbs,
const std::vector<Real>& mktFactor) const;
Real conditionalExpectedTrancheLoss(
const std::vector<Real>& invUncondProbs,
const std::vector<Real>& mktFactor) const;
void resetModel() {
remainingNotionals_ = basket_->remainingNotionals();
remainingNotional_ = basket_->remainingNotional();
attachRatio_ = std::min(basket_->remainingAttachmentAmount()
/ basket_->remainingNotional(), 1.);
detachRatio_ = std::min(basket_->remainingDetachmentAmount()
/ basket_->remainingNotional(), 1.);
copula_->resetBasket(basket_.currentLink());
}
protected:
const boost::shared_ptr<ConstantLossLatentmodel<CP> > copula_;
// cached todays arguments values
mutable Size remainingSize_;
mutable std::vector<Real> remainingNotionals_;
mutable Real remainingNotional_;
// remaining basket levels:
mutable Real attachRatio_, detachRatio_;
/*
// Just for testing the ESF direct integration, not for release,
// this is very inneficient:
class ESFIntegrator {
public:
ESFIntegrator(const SaddlePointLossModel& me,
const Date& date,
Real lossPercentileFract//,
//const std::vector<Real>& mktFactor
)
: me_(me), date_(date),lossPercentileFract_(lossPercentileFract)
{}
Real operator()(Real x) const {
return me_.densityTrancheLoss(date_, x + lossPercentileFract_)
* (x + lossPercentileFract_);
}
Real lossPercentileFract_;
Date date_;
// const std::vector<Real>& mktFactor_;
const SaddlePointLossModel& me_;
};
*/
};
// -- Inlined integrations------------------------------------------------
// Unconditional Moments and derivatives. --------------------------------
template<class CP>
inline Real SaddlePointLossModel<CP>::CumulantGenerating(
const Date& date, Real s) const
{
std::vector<Real> invUncondProbs =
basket_->remainingProbabilities(date);
for(Size i=0; i<invUncondProbs.size(); i++)
invUncondProbs[i] =
copula_->inverseCumulativeY(invUncondProbs[i], i);
return copula_->integratedExpectedValue(
boost::function<Real (const std::vector<Real>& v1)>(
boost::bind(
&SaddlePointLossModel<CP>::CumulantGeneratingCond,
this,
boost::cref(invUncondProbs),
s,
_1)
)
);
}
template<class CP>
inline Real SaddlePointLossModel<CP>::CumGen1stDerivative(
const Date& date, Real s) const
{
std::vector<Real> invUncondProbs =
basket_->remainingProbabilities(date);
for(Size i=0; i<invUncondProbs.size(); i++)
invUncondProbs[i] =
copula_->inverseCumulativeY(invUncondProbs[i], i);
return copula_->integratedExpectedValue(
boost::function<Real (const std::vector<Real>& v1)>(
boost::bind(
&SaddlePointLossModel<CP>::CumGen1stDerivativeCond,
this,
boost::cref(invUncondProbs),
s,
_1)
)
);
}
template<class CP>
inline Real SaddlePointLossModel<CP>::CumGen2ndDerivative(
const Date& date, Real s) const
{
std::vector<Real> invUncondProbs =
basket_->remainingProbabilities(date);
for(Size i=0; i<invUncondProbs.size(); i++)
invUncondProbs[i] =
copula_->inverseCumulativeY(invUncondProbs[i], i);
return copula_->integratedExpectedValue(
boost::function<Real (const std::vector<Real>& v1)>(
boost::bind(
&SaddlePointLossModel<CP>::CumGen2ndDerivativeCond,
this,
boost::cref(invUncondProbs),
s,
_1)
)
);
}
template<class CP>
inline Real SaddlePointLossModel<CP>::CumGen3rdDerivative(
const Date& date, Real s) const
{
std::vector<Real> invUncondProbs =
basket_->remainingProbabilities(date);
for(Size i=0; i<invUncondProbs.size(); i++)
invUncondProbs[i] =
copula_->inverseCumulativeY(invUncondProbs[i], i);
return copula_->integratedExpectedValue(
boost::function<Real (const std::vector<Real>& v1)>(
boost::bind(
&SaddlePointLossModel<CP>::CumGen3rdDerivativeCond,
this,
boost::cref(invUncondProbs),
s,
_1)
)
);
}
template<class CP>
inline Real SaddlePointLossModel<CP>::CumGen4thDerivative(
const Date& date, Real s) const
{
std::vector<Real> invUncondProbs =
basket_->remainingProbabilities(date);
for(Size i=0; i<invUncondProbs.size(); i++)
invUncondProbs[i] =
copula_->inverseCumulativeY(invUncondProbs[i], i);
return copula_->integratedExpectedValue(
boost::function<Real (const std::vector<Real>& v1)>(
boost::bind(
&SaddlePointLossModel<CP>::CumGen4thDerivativeCond,
this,
boost::cref(invUncondProbs),
s,
_1)
)
);
}
template<class CP>
inline Probability SaddlePointLossModel<CP>::probOverLoss(
const Date& d, Real trancheLossFract) const
{
// avoid computation:
if (trancheLossFract >=
// time dependent soon:
basket_->detachmentAmount()) return 0.;
std::vector<Real> invUncondProbs =
basket_->remainingProbabilities(d);
for(Size i=0; i<invUncondProbs.size(); i++)
invUncondProbs[i] =
copula_->inverseCumulativeY(invUncondProbs[i], i);
return copula_->integratedExpectedValue(
boost::function<Real (const std::vector<Real>& v1)>(
boost::bind(
&SaddlePointLossModel<CP>::probOverLossCond,
this,
boost::cref(invUncondProbs),
trancheLossFract,
_1)
)
);
}
template<class CP>
inline Probability SaddlePointLossModel<CP>::probOverPortfLoss(
const Date& d, Real loss) const
{
const std::vector<Probability> uncondProbs =
basket_->remainingProbabilities(d);
std::vector<Real> invUncondProbs =
basket_->remainingProbabilities(d);
for(Size i=0; i<invUncondProbs.size(); i++)
invUncondProbs[i] =
copula_->inverseCumulativeY(invUncondProbs[i], i);
return copula_->integratedExpectedValue(
boost::function<Real (const std::vector<Real>& v1)>(
boost::bind(
&SaddlePointLossModel<CP>::probOverLossPortfCond,
this,
boost::cref(invUncondProbs),
loss,
_1)
)
);
}
template<class CP>
inline Real SaddlePointLossModel<CP>::expectedTrancheLoss(
const Date& d) const
{
std::vector<Real> invUncondProbs =
basket_->remainingProbabilities(d);
for(Size i=0; i<invUncondProbs.size(); i++)
invUncondProbs[i] =
copula_->inverseCumulativeY(invUncondProbs[i], i);
return copula_->integratedExpectedValue(
boost::function<Real (const std::vector<Real>& v1)>(
boost::bind(
&SaddlePointLossModel<CP>::conditionalExpectedTrancheLoss,
this,
boost::cref(invUncondProbs),
_1)
)
);
}
template<class CP>
inline Probability SaddlePointLossModel<CP>::probDensity(
const Date& d, Real loss) const
{
std::vector<Real> invUncondProbs =
basket_->remainingProbabilities(d);
for(Size i=0; i<invUncondProbs.size(); i++)
invUncondProbs[i] =
copula_->inverseCumulativeY(invUncondProbs[i], i);
return copula_->integratedExpectedValue(
boost::function<Real (const std::vector<Real>& v1)>(
boost::bind(
&SaddlePointLossModel<CP>::probDensityCond,
this,
boost::cref(invUncondProbs),
loss,
_1)
)
);
}
template<class CP>
inline Disposable<std::vector<Real> >
SaddlePointLossModel<CP>::splitVaRLevel(const Date& date, Real s) const
{
std::vector<Real> invUncondProbs =
basket_->remainingProbabilities(date);
for(Size i=0; i<invUncondProbs.size(); i++)
invUncondProbs[i] =
copula_->inverseCumulativeY(invUncondProbs[i], i);
return copula_->integratedExpectedValue(
boost::function<Disposable<std::vector<Real> > (
const std::vector<Real>& v1)>(
boost::bind(
&SaddlePointLossModel<CP>::splitLossCond,
this,
boost::cref(invUncondProbs),
s,
_1)
)
);
}
/* ------------------------------------------------------------------------
Conditional Moments and derivatives.
Notice that in all this methods the date dependence is implicitly
present in the unconditional probabilities. But, as in other LMs, it
is redundant and expensive to perform the call to the probabilities in
these methods since they are integrands.
---------------------------------------------------------------------- */
template<class CP>
Real SaddlePointLossModel<CP>::CumulantGeneratingCond(
const std::vector<Real>& invUncondProbs,
Real lossFraction,
const std::vector<Real>& mktFactor) const
{
const Size nNames = remainingNotionals_.size();
Real sum = 0.;
for(Size iName=0; iName < nNames; iName++) {
Probability pBuffer =
copula_->conditionalDefaultProbabilityInvP(
invUncondProbs[iName], iName, mktFactor);
sum += std::log(1. - pBuffer +
pBuffer * std::exp(remainingNotionals_[iName] *
(1.-copula_->conditionalRecoveryInvP(invUncondProbs[iName],
iName, mktFactor)) * lossFraction / remainingNotional_));
}
return sum;
}
template<class CP>
Real SaddlePointLossModel<CP>::CumGen1stDerivativeCond(
const std::vector<Real>& invUncondProbs,
Real saddle,
const std::vector<Real>& mktFactor) const
{
const Size nNames = remainingNotionals_.size();
Real sum = 0.;
for(Size iName=0; iName < nNames; iName++) {
Probability pBuffer =
copula_->conditionalDefaultProbabilityInvP(
invUncondProbs[iName], iName, mktFactor);
// loss in fractional units
Real lossInDef = remainingNotionals_[iName] *
(1.-copula_->conditionalRecoveryInvP(invUncondProbs[iName],
iName, mktFactor)) / remainingNotional_;
Real midFactor = pBuffer * std::exp(lossInDef * saddle);
sum += lossInDef * midFactor / (1.-pBuffer + midFactor);
}
return sum;
}
template<class CP>
Real SaddlePointLossModel<CP>::CumGen2ndDerivativeCond(
const std::vector<Real>& invUncondProbs,
Real saddle,
const std::vector<Real>& mktFactor) const
{
const Size nNames = remainingNotionals_.size();
Real sum = 0.;
for(Size iName=0; iName < nNames; iName++) {
Probability pBuffer =
copula_->conditionalDefaultProbabilityInvP(
invUncondProbs[iName], iName, mktFactor);
// loss in fractional units
Real lossInDef = remainingNotionals_[iName] *
(1.-copula_->conditionalRecoveryInvP(invUncondProbs[iName],
iName, mktFactor)) / remainingNotional_;
Real midFactor = pBuffer * std::exp(lossInDef * saddle);
Real denominator = 1.-pBuffer + midFactor;
sum += lossInDef * lossInDef * midFactor / denominator -
std::pow(lossInDef * midFactor / denominator , 2.);
}
return sum;
}
template<class CP>
Real SaddlePointLossModel<CP>::CumGen3rdDerivativeCond(
const std::vector<Real>& invUncondProbs,
Real saddle,
const std::vector<Real>& mktFactor) const
{
const Size nNames = remainingNotionals_.size();
Real sum = 0.;
for(Size iName=0; iName < nNames; iName++) {
Probability pBuffer =
copula_->conditionalDefaultProbabilityInvP(
invUncondProbs[iName], iName, mktFactor);
Real lossInDef = remainingNotionals_[iName] *
(1.-copula_->conditionalRecoveryInvP(invUncondProbs[iName],
iName, mktFactor)) / remainingNotional_;
const Real midFactor = pBuffer * std::exp(lossInDef * saddle);
const Real denominator = 1.-pBuffer + midFactor;
const Real& suma0 = denominator;
const Real suma1 = lossInDef * midFactor;
const Real suma2 = lossInDef * suma1;
const Real suma3 = lossInDef * suma2;
sum += (suma3 + (2.*std::pow(suma1, 3.)/suma0 -
3.*suma1*suma2)/suma0)/suma0;
}
return sum;
}
template<class CP>
Real SaddlePointLossModel<CP>::CumGen4thDerivativeCond(
const std::vector<Real>& invUncondProbs,
Real saddle,
const std::vector<Real>& mktFactor) const
{
const Size nNames = remainingNotionals_.size();
Real sum = 0.;
for(Size iName=0; iName < nNames; iName++) {
Probability pBuffer =
copula_->conditionalDefaultProbabilityInvP(
invUncondProbs[iName], iName, mktFactor);
Real lossInDef = remainingNotionals_[iName] *
(1.-copula_->conditionalRecoveryInvP(invUncondProbs[iName],
iName, mktFactor)) / remainingNotional_;
Real midFactor = pBuffer * std::exp(lossInDef * saddle);
Real denominator = 1.-pBuffer + midFactor;
const Real& suma0 = denominator;
const Real suma1 = lossInDef * midFactor;
const Real suma2 = lossInDef * suma1;
const Real suma3 = lossInDef * suma2;
const Real suma4 = lossInDef * suma3;
sum += (suma4 + (-4.*suma1*suma3 - 3.*suma2*suma2 +
(12.*suma1*suma1*suma2 -
6.*std::pow(suma1,4.)/suma0)/suma0)/suma0)/suma0;
}
return sum;
}
template<class CP>
boost::tuples::tuple<Real, Real, Real, Real> /// DISPOSABLE????
SaddlePointLossModel<CP>::CumGen0234DerivCond(
const std::vector<Real>& invUncondProbs,
Real saddle,
const std::vector<Real>& mktFactor) const
{
const Size nNames = remainingNotionals_.size();
Real deriv0 = 0.,
//deriv1 = 0.,
deriv2 = 0.,
deriv3 = 0.,
deriv4 = 0.;
for(Size iName=0; iName < nNames; iName++) {
Probability pBuffer =
copula_->conditionalDefaultProbabilityInvP(
invUncondProbs[iName], iName, mktFactor);
Real lossInDef = remainingNotionals_[iName] *
(1.-copula_->conditionalRecoveryInvP(invUncondProbs[iName],
iName, mktFactor)) / remainingNotional_;
Real midFactor = pBuffer * std::exp(lossInDef * saddle);
Real denominator = 1.-pBuffer + midFactor;
const Real& suma0 = denominator;
const Real suma1 = lossInDef * midFactor;
const Real suma2 = lossInDef * suma1;
const Real suma3 = lossInDef * suma2;
const Real suma4 = lossInDef * suma3;
// To do: optimize these:
deriv0 += std::log(suma0);
//deriv1 += suma1 / suma0;
deriv2 += suma2 / suma0 - std::pow(suma1 / suma0 , 2.);
deriv3 += (suma3 + (2.*std::pow(suma1, 3.)/suma0 -
3.*suma1*suma2)/suma0)/suma0;
deriv4 += (suma4 + (-4.*suma1*suma3 - 3.*suma2*suma2 +
(12.*suma1*suma1*suma2 -
6.*std::pow(suma1,4.)/suma0)/suma0)/suma0)/suma0;
}
return boost::tuples::tuple<Real, Real, Real, Real>(deriv0, deriv2,
deriv3, deriv4);
}
template<class CP>
boost::tuples::tuple<Real, Real> /// DISPOSABLE????
SaddlePointLossModel<CP>::CumGen02DerivCond(
const std::vector<Real>& invUncondProbs,
Real saddle,
const std::vector<Real>& mktFactor) const
{
const Size nNames = remainingNotionals_.size();
Real deriv0 = 0.,
//deriv1 = 0.,
deriv2 = 0.;
for(Size iName=0; iName < nNames; iName++) {
Probability pBuffer =
copula_->conditionalDefaultProbabilityInvP(
invUncondProbs[iName], iName, mktFactor);
Real lossInDef = remainingNotionals_[iName] *
(1.-copula_->conditionalRecoveryInvP(invUncondProbs[iName],
iName, mktFactor)) / remainingNotional_;
Real midFactor = pBuffer * std::exp(lossInDef * saddle);
Real denominator = 1.-pBuffer + midFactor;
const Real& suma0 = denominator;
const Real suma1 = lossInDef * midFactor;
const Real suma2 = lossInDef * suma1;
// To do: optimize these:
deriv0 += std::log(suma0);
//deriv1 += suma1 / suma0;
deriv2 += suma2 / suma0 - std::pow(suma1 / suma0 , 2.);
}
return boost::tuples::tuple<Real, Real>(deriv0, deriv2);
}
// ----- Saddle point search ----------------------------------------------
template<class CP>
Real SaddlePointLossModel<CP>::findSaddle(
const std::vector<Real>& invUncondPs,
Real lossLevel, // in total portfolio loss fractional unit
const std::vector<Real>& mktFactor,
Real accuracy,
Natural maxEvaluations
) const
{
// \to do:
// REQUIRE that loss level is below the max loss attainable in
// the portfolio, otherwise theres no solution...
SaddleObjectiveFunction f(*this, lossLevel, invUncondPs, mktFactor);
Size nNames = remainingNotionals_.size();
std::vector<Real> lgds;
for(Size iName=0; iName<nNames; iName++)
lgds.push_back(remainingNotionals_[iName] *
(1.-copula_->conditionalRecoveryInvP(invUncondPs[iName], iName,
mktFactor)) );
// computed limits:
// position of the name with the largest relative exposure loss (i.e.:
// largest: N_i LGD_i / N_{total})
Size iNamMax = std::distance(lgds.begin(),
std::max_element(lgds.begin(), lgds.end()) );
// gap to be considered zero at the negative side of the logistic
// inversion:
static const Real deltaMin = 1.e-5;
//
Probability pMaxName = copula_->conditionalDefaultProbabilityInvP(
invUncondPs[iNamMax], iNamMax, mktFactor);
// aproximates the saddle pt corresponding to this minimum; finds
// it by using only the smallest logistic term and thus this is
// smaller than the true value:
Real saddleMin = 1./(lgds[iNamMax]/remainingNotional_) *
std::log(deltaMin*(1.-pMaxName)/
(pMaxName*lgds[iNamMax]/remainingNotional_-pMaxName*deltaMin));
// and the associated minimum loss is approximately: (this is thence
// the minimum loss we can resolve/invert)
Real minLoss =
CumGen1stDerivativeCond(invUncondPs, saddleMin, mktFactor);
// If we are below the loss resolution it returns approximating
// by the minimum/maximum attainable point. Typically the functionals
// to integrate will have a low dependency on this point.
if(lossLevel < minLoss) return saddleMin;
static const Real deltaMax = 1.e-6; // 1.e-9;
Real saddleMax = 1./(lgds[iNamMax]/remainingNotional_) *
std::log((lgds[iNamMax]/remainingNotional_
-deltaMin)*(1.-pMaxName)/(pMaxName*deltaMin));
Real maxLoss =
CumGen1stDerivativeCond(invUncondPs, saddleMax, mktFactor);
if(lossLevel > maxLoss) return saddleMax;
Brent solverBrent;
Real guess = (saddleMin+saddleMax)/2.;
/*
(lossLevel -
CumGen1stDerivativeCond(invUncondPs, lossLevel, mktFactor))
/CumGen2ndDerivativeCond(invUncondPs, lossLevel, mktFactor);
if(guess > saddleMax) guess = (saddleMin+saddleMax)/2.;
*/
solverBrent.setMaxEvaluations(maxEvaluations);
return solverBrent.solve(f, accuracy, guess, saddleMin, saddleMax);
}
// ----- Statistics -------------------------------------------------------
template<class CP>
Real SaddlePointLossModel<CP>::percentile(const Date& d,
Probability percentile) const
{
//this test should be in the calling basket...?
QL_REQUIRE(percentile >=0. && percentile <=1.,
"Incorrect percentile value.");
// still this does not tackle the situation where we have cumulated
// losses from previous defaults:
if(d <= Settings::instance().evaluationDate()) return 0.;
// Trivial cases when the percentile is outside the prob range
// associated to the tranche limits:
if(percentile <= 1.-probOverLoss(d, 0.)) return 0.;
if(percentile >= 1.-probOverLoss(d, 1.))
return basket_->remainingTrancheNotional();
SaddlePercObjFunction f(*this, percentile, d);
Brent solver;
solver.setMaxEvaluations(100);
Real minVal = QL_EPSILON;
Real maxVal = 1.-QL_EPSILON;
Real guess = 0.5;
Real solut = solver.solve(f, 1.e-4, guess, minVal, maxVal);
return basket_->remainingTrancheNotional() * solut;
}
template<class CP>
Probability SaddlePointLossModel<CP>::probOverLossCond(
const std::vector<Real>& invUncondPs,
Real trancheLossFract,
const std::vector<Real>& mktFactor) const {
Real portfFract = attachRatio_ + trancheLossFract *
(detachRatio_-attachRatio_);// these are remaining ratios
// for non-equity losses add the probability jump at zero tranche
// losses (since this method returns prob of losing more or
// equal to)
////////////////--- if(trancheLossFract <= QL_EPSILON) return 1.;
return
probOverLossPortfCond(invUncondPs,
//below; should substract realized loses. Use remaining amounts??
portfFract * basket_->basketNotional(),
mktFactor);
}
template<class CP>
Disposable<std::map<Real, Probability> >
SaddlePointLossModel<CP>::lossDistribution(const Date& d) const {
std::map<Real, Probability> distrib;
static const Real numPts = 500.;
for(Real lossFraction=1./numPts; lossFraction<0.45;
lossFraction+= 1./numPts)
distrib.insert(std::make_pair<Real, Probability>(
lossFraction * remainingNotional_ ,
1.-probOverPortfLoss(d, lossFraction* remainingNotional_ )));
return distrib;
}
/* NOTICE THIS IS ON THE TOTAL PORTFOLIO ---- UNTRANCHED..............
Probability of having losses in the portfolio due to default
events equal or larger than a given absolute loss value on a
given date conditional to the latent model factor.
The integral expression on the expansion is the first order
integration as presented in several references, see for instance;
equation 8 in R.Martin, K.Thompson, and C. Browne 's
'Taking to the Saddle', Risk Magazine, June 2001, page 91
@param loss loss in absolute value
*/
template<class CP>
Probability SaddlePointLossModel<CP>::probOverLossPortfCond(
const std::vector<Real>& invUncondProbs,
Real loss,
const std::vector<Real>& mktFactor) const
{
/* This is taking in the unconditional probabilites non inverted. See if
the callers can be written taking the inversion already; if they are
performing it thats a perf hit. At least this can be seen to be true
for the recovery call (but rand rr are not intended to be used yet)
*/
// return probOverLossPortfCond1stOrder(d, loss, mktFactor);
if (loss <= QL_EPSILON) return 1.;
Real relativeLoss = loss / remainingNotional_;
if (relativeLoss >= 1.-QL_EPSILON) return 0.;
const Size nNames = remainingNotionals_.size();
Real averageRecovery_ = 0.;
for(Size iName=0; iName < nNames; iName++)
averageRecovery_ += copula_->conditionalRecoveryInvP(
invUncondProbs[iName], iName, mktFactor);
averageRecovery_ = averageRecovery_ / nNames;
Real maxAttLossFract = 1.-averageRecovery_;
if(relativeLoss > maxAttLossFract) return 0.;
Real saddlePt = findSaddle(invUncondProbs,
relativeLoss, mktFactor);
boost::tuples::tuple<Real, Real, Real, Real> cumulants =
CumGen0234DerivCond(invUncondProbs,
saddlePt, mktFactor);
Real baseVal = cumulants.get<0>();
Real secondVal = cumulants.get<1>();
Real K3Saddle = cumulants.get<2>();
Real K4Saddle = cumulants.get<3>();
Real saddleTo2 = saddlePt * saddlePt;
Real saddleTo3 = saddleTo2 * saddlePt;
Real saddleTo4 = saddleTo3 * saddlePt;
Real saddleTo6 = saddleTo4 * saddleTo2;
Real K3SaddleTo2 = K3Saddle*K3Saddle;
if(saddlePt > 0.) { // <-> (loss > condEL)
Real exponent = baseVal - relativeLoss * saddlePt +
.5 * saddleTo2 * secondVal;
if( std::abs(exponent) > 700.) return 0.;
return
std::exp(exponent)
* CumulativeNormalDistribution()(-std::abs(saddlePt)*
std::sqrt(/*saddleTo2 **/secondVal))
// high order corrections:
* (1. - saddleTo3*K3Saddle/6. + saddleTo4*K4Saddle/24. +
saddleTo6*K3SaddleTo2/72.)
/*
// FIX ME: this term introduces at times numerical
// instabilty (shows up in percentile computation)
+ (3.*secondVal*(1.-secondVal*saddleTo2)*
(saddlePt*K4Saddle-4.*K3Saddle)
- saddlePt*K3SaddleTo2*(3.-saddleTo2*secondVal +
saddleTo4*secondVal*secondVal))
/ (72.*M_SQRTPI*M_SQRT_2*std::pow(secondVal, 5./2.) )
*/
;
}else if(saddlePt==0.){// <-> (loss == condEL)
return .5;
}else {// <->(loss < condEL)
Real exponent = baseVal - relativeLoss * saddlePt +
.5 * saddleTo2 * secondVal;
if( std::abs(exponent) > 700.) return 0.;
return
1.-
std::exp(exponent)
* CumulativeNormalDistribution()(-std::abs(saddlePt)
* std::sqrt(/*saddleTo2 **/secondVal))// static call?
// high order corrections:
* (1. - saddleTo3*K3Saddle/6. + saddleTo4*K4Saddle/24. +
saddleTo6*K3SaddleTo2/72.)
/*
+ (3.*secondVal*(1.-secondVal*saddleTo2)*
(saddlePt*K4Saddle-4.*K3Saddle)
- saddlePt*K3SaddleTo2*(3.-saddleTo2*secondVal +
saddleTo4*secondVal*secondVal))
/ (72.*M_SQRTPI*M_SQRT_2*std::pow(secondVal, 5./2.) )
*/
;
}
}
template<class CP>
// cheaper; less terms retained; yet the cost lies in the saddle point calc
Probability SaddlePointLossModel<CP>::probOverLossPortfCond1stOrder(
const std::vector<Real>& invUncondPs,
Real loss,
const std::vector<Real>& mktFactor) const
{
if (loss <= QL_EPSILON) return 1.;
const Size nNames = remainingNotionals_.size();
Real relativeLoss = loss / remainingNotional_;
if(relativeLoss >= 1.-QL_EPSILON) return 0.;
// only true for constant recovery models......?
Real averageRecovery_ = 0.;
for(Size iName=0; iName < nNames; iName++)
averageRecovery_ +=
copula_->conditionalRecoveryInvP(invUncondPs[iName], iName,
mktFactor);
averageRecovery_ = averageRecovery_ / nNames;
Real maxAttLossFract = 1.-averageRecovery_;
if(relativeLoss > maxAttLossFract) return 0.;
Real saddlePt = findSaddle(invUncondPs,
relativeLoss, mktFactor);
boost::tuples::tuple<Real, Real> cumulants =
CumGen02DerivCond(invUncondPs,
saddlePt, mktFactor);
Real baseVal = cumulants.get<0>();
Real secondVal = cumulants.get<1>();
Real saddleTo2 = saddlePt * saddlePt;
if(saddlePt > 0.) { // <-> (loss > condEL)
Real exponent = baseVal - relativeLoss * saddlePt +
.5 * saddleTo2 * secondVal;
if( std::abs(exponent) > 700.) return 0.;
return
// dangerous exponential; fix me
std::exp(exponent)
/* std::exp(baseVal - relativeLoss * saddlePt
+ .5 * saddleTo2 * secondVal)*/
* CumulativeNormalDistribution()(-std::abs(saddlePt)*
std::sqrt(/*saddleTo2 **/secondVal));
}else if(saddlePt==0.){// <-> (loss == condEL)
return .5;
}else {// <->(loss < condEL)
Real exponent = baseVal - relativeLoss * saddlePt +
.5 * saddleTo2 * secondVal;
if( std::abs(exponent) > 700.) return 0.;
return
1.-
/* std::exp(baseVal - relativeLoss * saddlePt
+ .5 * saddleTo2 * secondVal)*/
std::exp(exponent)
* CumulativeNormalDistribution()(-std::abs(saddlePt)*
std::sqrt(/*saddleTo2 **/secondVal));
}
}
/*! NOTICE THIS IS ON THE TOTAL PORTFOLIO ---- UNTRANCHED
Probability density of having losses in the portfolio due to default
events equal to a given value on a given date conditional to the w
latent model factor.
Based on the integrals of the expected shortfall. See......refernce.
*/
template<class CP>
Probability SaddlePointLossModel<CP>::probDensityCond(
const std::vector<Real>& invUncondPs,
Real loss,
const std::vector<Real>& mktFactor) const
{
if (loss <= QL_EPSILON) return 0.;
Real relativeLoss = loss / remainingNotional_;
Real saddlePt = findSaddle(invUncondPs,
relativeLoss, mktFactor);
boost::tuples::tuple<Real, Real, Real, Real> cumulants =
CumGen0234DerivCond(invUncondPs,
saddlePt, mktFactor);
/// access them directly rather than through this copy
Real K0Saddle = cumulants.get<0>();
Real K2Saddle = cumulants.get<1>();
Real K3Saddle = cumulants.get<2>();
Real K4Saddle = cumulants.get<3>();
/* see, for instance R.Martin "he saddle point method and portfolio
optionalities." in Risk December 2006 p.93 */
Real cum2DerCond = CumGen2ndDerivativeCond(invUncondPs,
saddlePt, mktFactor);
//\todo the exponentials below are dangerous and agressive, tame them.
return
(
1.
+ K4Saddle
/(8.*std::pow(K2Saddle, 2.))
- 5.*std::pow(K3Saddle,2.)
/(24.*std::pow(K2Saddle, 3.))
) * std::exp(K0Saddle - saddlePt * relativeLoss)
/ (std::sqrt(2. * M_PI * K2Saddle));
}
/* NOTICE THIS IS ON THE TOTAL PORTFOLIO ---- UNTRANCHED..
Sensitivities of the individual names to a given portfolio loss value
due to defaults. It returns ratios to the total structure notional,
which aggregated add up to the requested loss value.
see equation 8 in 'VAR: who contributes and how much?' by R.Martin,
K.Thompson, and C. Browne in Risk Magazine, August 2001
@param loss Loss amount level at which we want to request the sensitivity.
Equivalent to a percentile.
*/
template<class CP>
Disposable<std::vector<Real> > SaddlePointLossModel<CP>::splitLossCond(
const std::vector<Real>& invUncondProbs,
Real loss,
std::vector<Real> mktFactor) const
{
const Size nNames = remainingNotionals_.size();
std::vector<Real> condContrib(nNames, 0.);
if (loss <= QL_EPSILON) return condContrib;
Real saddlePt = findSaddle(invUncondProbs, loss / remainingNotional_,
mktFactor);
for(Size iName=0; iName<nNames; iName++) {
Probability pBuffer =
copula_->conditionalDefaultProbabilityInvP(
invUncondProbs[iName], iName, mktFactor);
Real lossInDef = remainingNotionals_[iName] *
(1.-copula_->conditionalRecoveryInvP(invUncondProbs[iName],
iName, mktFactor));
Real midFactor = pBuffer *
std::exp(lossInDef * saddlePt/ remainingNotional_);
Real denominator = 1.-pBuffer + midFactor;
condContrib[iName] = lossInDef * midFactor / denominator;
}
return condContrib;
}
template<class CP>
Real SaddlePointLossModel<CP>::conditionalExpectedLoss(
const std::vector<Real>& invUncondProbs,
const std::vector<Real>& mktFactor) const
{
const Size nNames = remainingNotionals_.size();
Real eloss = 0.;
/// USE STL.....-------------------
for(Size iName=0; iName < nNames; iName++) {
Probability pBuffer = copula_->conditionalDefaultProbabilityInvP(
invUncondProbs[iName], iName, mktFactor);
eloss += pBuffer * remainingNotionals_[iName] *
(1.-copula_->conditionalRecoveryInvP(invUncondProbs[iName],
iName, mktFactor));
}
return eloss;
}
template<class CP>
Real SaddlePointLossModel<CP>::conditionalExpectedTrancheLoss(
const std::vector<Real>& invUncondProbs,
const std::vector<Real>& mktFactor) const
{
const Size nNames = remainingNotionals_.size();
Real eloss = 0.;
/// USE STL.....-------------------
for(Size iName=0; iName < nNames; iName++) {
Probability pBuffer = copula_->conditionalDefaultProbabilityInvP(
invUncondProbs[iName], iName, mktFactor);
eloss +=
pBuffer * remainingNotionals_[iName] *
(1.-copula_->conditionalRecoveryInvP(invUncondProbs[iName],
iName, mktFactor));
}
return std::min(
std::max(eloss - attachRatio_ * remainingNotional_, 0.),
(detachRatio_ - attachRatio_) * remainingNotional_);
}
template<class CP>
Disposable<std::vector<Real> >
SaddlePointLossModel<CP>::expectedShortfallSplitCond(
const std::vector<Real>& invUncondProbs,
Real lossPerc, const std::vector<Real>& mktFactor) const
{
const Size nNames = remainingNotionals_.size();
std::vector<Real> lgds;
for(Size iName=0; iName<nNames; iName++)
lgds.push_back(remainingNotionals_[iName] *
(1.-copula_->conditionalRecoveryInvP(invUncondProbs[iName],
iName, mktFactor)));
std::vector<Real> vola(nNames, 0.), mu(nNames, 0.);
Real volaTot = 0., muTot = 0.;
for(Size iName=0; iName < nNames; iName++) {
Probability pBuffer = copula_->conditionalDefaultProbabilityInvP(
invUncondProbs[iName], iName, mktFactor);
mu[iName] = lgds[iName] * pBuffer / remainingNotionals_[iName];
muTot += lgds[iName] * pBuffer;
vola[iName] = lgds[iName] * lgds[iName] * pBuffer * (1.-pBuffer)
/ remainingNotionals_[iName];
volaTot += lgds[iName] * lgds[iName] * pBuffer * (1.-pBuffer) ;
}
std::for_each(vola.begin(), vola.end(),
std::bind1st(std::divides<Real>(), volaTot));
for(Size iName=0; iName < nNames; iName++)
vola[iName] = vola[iName] / volaTot;
std::vector<Real> esfPartition(nNames, 0.);
for(Size iName=0; iName < nNames; iName++) {
Real uEdisp = (lossPerc-muTot)/std::sqrt(volaTot);
esfPartition[iName] = mu[iName]
* CumulativeNormalDistribution()(uEdisp) // static call?
+ vola[iName] * NormalDistribution()(uEdisp);
}
return esfPartition;
}
template<class CP>
Real SaddlePointLossModel<CP>::expectedShortfallTrancheCond(
const std::vector<Real>& invUncondProbs,
Real lossPerc, // value
Probability percentile,
const std::vector<Real>& mktFactor) const
{
/* TO DO: this is too crude, a general expresion valid for all
situations is possible (with no extra cost as long as the loss limits
are checked).
*/
//tranche correction term:
Real correctionTerm = 0.;
Real probLOver = probOverLossPortfCond(invUncondProbs,
basket_->detachmentAmount(), mktFactor);
if(basket_->attachmentAmount() > QL_EPSILON) {
if(lossPerc < basket_->attachmentAmount()) {
correctionTerm = ( (basket_->detachmentAmount()
- 2.*basket_->attachmentAmount())*
probOverLossPortfCond(invUncondProbs, lossPerc,
mktFactor)
+ basket_->attachmentAmount() * probLOver )/(1.-percentile);
}else{
correctionTerm = ( (percentile-1)*basket_->attachmentAmount()
+ basket_->detachmentAmount() * probLOver
)/(1.-percentile);
}
}
return expectedShortfallFullPortfolioCond(invUncondProbs,
std::max(lossPerc, basket_->attachmentAmount()), mktFactor)
+ expectedShortfallFullPortfolioCond(invUncondProbs,
basket_->detachmentAmount(), mktFactor)
- correctionTerm;
}
template<class CP>
Real SaddlePointLossModel<CP>::expectedShortfallFullPortfolioCond(
const std::vector<Real>& invUncondProbs,
Real lossPerc, // value
const std::vector<Real>& mktFactor) const
{
/* This version is based on: Martin 2006 paper and on the expression
in 'SaddlePoint approximation of expected shortfall for transformed
means' S.A. Broda and M.S.Paolella , Amsterdam School of Economics
discussion paper, available online.
*/
Real lossPercRatio = lossPerc /remainingNotional_;
Real elCond = 0.;
const Size nNames = remainingNotionals_.size();
/// use stl algorthms
for(Size iName=0; iName < nNames; iName++) {
Probability pBuffer = copula_->conditionalDefaultProbabilityInvP(
invUncondProbs[iName], iName, mktFactor);
elCond += pBuffer * remainingNotionals_[iName] *
(1.-copula_->conditionalRecoveryInvP(invUncondProbs[iName],
iName, mktFactor));
}
Real saddlePt = findSaddle(invUncondProbs, lossPercRatio, mktFactor);
// Martin 2006:
return
elCond * probOverLossPortfCond(invUncondProbs, lossPerc, mktFactor)
+ (lossPerc - elCond) * probDensityCond(invUncondProbs, lossPerc,
mktFactor) /saddlePt;
// calling the EL tranche
// return elCond - expectedEquityLossCond(d, lossPercRatio, mktFactor);
/*
// Broda and Paolella:
Real elCondRatio = elCond / remainingNotional_;
boost::tuples::tuple<Real, Real, Real, Real> cumulants =
CumGen0234DerivCond(uncondProbs,
saddlePt, mktFactor);
Real K0Saddle = cumulants.get<0>();///USE THEM DIRECTLY
Real K2Saddle = cumulants.get<1>();
Real wq = std::sqrt(2. * saddlePt * lossPercRatio - 2. * K0Saddle);
//std::sqrt(-2. * saddlePt * lossPerc + 2. * K0Saddle);????
Real factor = 1.;
if(saddlePt<0.) {
wq = -wq;
factor = -1.;
}
Real numNames = static_cast<Real>(nNames);
Real term1 = CumulativeNormalDistribution()(wq)// * std::sqrt(numNames)
* elCond ;
Real term2 = .5 * M_2_SQRTPI * M_SQRT1_2 * (1./std::sqrt(numNames))
* exp(-wq*wq * numNames/2.)*(elCond/wq -
lossPerc/(saddlePt * std::sqrt(K2Saddle)));
return term1 + term2;
*/
}
template<class CP>
Real SaddlePointLossModel<CP>::expectedShortfall(const Date&d,
Probability percProb) const
{
// assuming I have the tranched one.
Real lossPerc = percentile(d, percProb);
// check the trivial case when the loss is over the detachment limit
// to avoid computation:
Real trancheAmount = basket_->trancheNotional() *
(detachRatio_-attachRatio_);
//assumed the amount includes the realized loses
if(lossPerc >= trancheAmount) return trancheAmount;
//SHOULD CHECK NOW THE OPPOSITE LIMIT ("zero" losses)....
std::vector<Real> invUncondProbs =
basket_->remainingProbabilities(d);
for(Size i=0; i<invUncondProbs.size(); i++)
invUncondProbs[i] =
copula_->inverseCumulativeY(invUncondProbs[i], i);
// Integrate with the tranche or the portfolio according to the limits.
return copula_->integratedExpectedValue(
boost::function<Real (const std::vector<Real>& v1)>(
boost::bind(
&SaddlePointLossModel<CP>::expectedShortfallFullPortfolioCond,
this,
boost::cref(invUncondProbs),
lossPerc,
_1)
)
) / (1.-percProb);
/* test:?
return std::inner_product(integrESFPartition.begin(),
integrESFPartition.end(), remainingNotionals_.begin(), 0.);
*/
}
}
#endif
|