/usr/include/Qca-qt5/QtCrypto/qca_publickey.h is in libqca-qt5-2-dev 2.1.1-0ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 | /*
* qca_publickey.h - Qt Cryptographic Architecture
* Copyright (C) 2003-2007 Justin Karneges <justin@affinix.com>
* Copyright (C) 2004,2005 Brad Hards <bradh@frogmouth.net>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301 USA
*
*/
/**
\file qca_publickey.h
Header file for PublicKey and PrivateKey related classes
\note You should not use this header directly from an
application. You should just use <tt> \#include \<QtCrypto>
</tt> instead.
*/
#ifndef QCA_PUBLICKEY_H
#define QCA_PUBLICKEY_H
#include <QObject>
#include "qca_core.h"
namespace QCA {
class PublicKey;
class PrivateKey;
class KeyGenerator;
class RSAPublicKey;
class RSAPrivateKey;
class DSAPublicKey;
class DSAPrivateKey;
class DHPublicKey;
class DHPrivateKey;
/**
Encryption algorithms
*/
enum EncryptionAlgorithm
{
EME_PKCS1v15, ///< Block type 2 (PKCS#1, Version 1.5)
EME_PKCS1_OAEP, ///< Optimal asymmetric encryption padding (PKCS#1, Version 2.0)
EME_PKCS1v15_SSL, ///< PKCS#1, Version 1.5 with an SSL-specific modification
EME_NO_PADDING ///< Raw RSA encryption
};
/**
Signature algorithm variants
Note that most signature algorithms follow a process of first hashing the
plaintext data to be signed, creating a payload format that wraps the hash
value (among other things), and then signing the payload with the private
key. So, for example, an EMSA3(SHA1) signature outputted by QCA cannot be
verified by merely performing RSA and SHA1 operations (e.g.
"openssl rsautl -verify" and comparing with sha1sum), because that would not
take the EMSA3 payload format into consideration.
*/
enum SignatureAlgorithm
{
SignatureUnknown, ///< Unknown signing algorithm
EMSA1_SHA1, ///< SHA1, with EMSA1 (IEEE1363-2000) encoding (this is the usual DSA algorithm - FIPS186)
EMSA3_SHA1, ///< SHA1, with EMSA3 (ie PKCS#1 Version 1.5) encoding
EMSA3_MD5, ///< MD5, with EMSA3 (ie PKCS#1 Version 1.5) encoding (this is the usual RSA algorithm)
EMSA3_MD2, ///< MD2, with EMSA3 (ie PKCS#1 Version 1.5) encoding
EMSA3_RIPEMD160, ///< RIPEMD160, with EMSA3 (ie PKCS#1 Version 1.5) encoding
EMSA3_Raw, ///< EMSA3 without computing a message digest or a DigestInfo encoding (identical to PKCS#11's CKM_RSA_PKCS mechanism)
EMSA3_SHA224, ///< SHA224, with EMSA3 (ie PKCS#1 Version 1.5) encoding
EMSA3_SHA256, ///< SHA256, with EMSA3 (ie PKCS#1 Version 1.5) encoding
EMSA3_SHA384, ///< SHA384, with EMSA3 (ie PKCS#1 Version 1.5) encoding
EMSA3_SHA512 ///< SHA512, with EMSA3 (ie PKCS#1 Version 1.5) encoding
};
/**
Signature formats (DSA only)
*/
enum SignatureFormat
{
DefaultFormat, ///< For DSA, this is the same as IEEE_1363
IEEE_1363, ///< 40-byte format from IEEE 1363 (Botan/.NET)
DERSequence ///< Signature wrapped in DER formatting (OpenSSL/Java)
};
/**
Password-based encryption
*/
enum PBEAlgorithm
{
PBEDefault, ///< Use modern default (same as PBES2_TripleDES_SHA1)
PBES2_DES_SHA1, ///< PKCS#5 v2.0 DES/CBC,SHA1
PBES2_TripleDES_SHA1, ///< PKCS#5 v2.0 TripleDES/CBC,SHA1
PBES2_AES128_SHA1, ///< PKCS#5 v2.0 AES-128/CBC,SHA1
PBES2_AES192_SHA1, ///< PKCS#5 v2.0 AES-192/CBC,SHA1
PBES2_AES256_SHA1 ///< PKCS#5 v2.0 AES-256/CBC,SHA1
};
/**
Return value from a format conversion
Note that if you are checking for any result other than ConvertGood,
then you may be introducing a provider specific dependency.
*/
enum ConvertResult
{
ConvertGood, ///< Conversion succeeded, results should be valid
ErrorDecode, ///< General failure in the decode stage
ErrorPassphrase, ///< Failure because of incorrect passphrase
ErrorFile ///< Failure because of incorrect file
};
/**
Well known discrete logarithm group sets
These sets are derived from three main sources:
Java Cryptographic Extensions,
<a href="http://www.ietf.org/rfc/rfc2412.txt">RFC2412</a> and
<a href="http://www.ietf.org/rfc/rfc3526.txt">RFC3526</a>.
*/
enum DLGroupSet
{
DSA_512, ///< 512 bit group, for compatibility with JCE
DSA_768, ///< 768 bit group, for compatibility with JCE
DSA_1024, ///< 1024 bit group, for compatibility with JCE
IETF_768, ///< Group 1 from RFC 2412, Section E.1
IETF_1024, ///< Group 2 from RFC 2412, Section E.2
IETF_1536, ///< 1536-bit MODP Group ("group 5") from RFC3526 Section 2.
IETF_2048, ///< 2048-bit MODP Group ("group 14") from RFC3526 Section 3.
IETF_3072, ///< 3072-bit MODP Group ("group 15") from RFC3526 Section 4.
IETF_4096, ///< 4096-bit MODP Group ("group 16") from RFC3526 Section 5.
IETF_6144, ///< 6144-bit MODP Group ("group 17") from RFC3526 Section 6.
IETF_8192 ///< 8192-bit MODP Group ("group 18") from RFC3526 Section 7.
};
/**
Encode a hash result in EMSA3 (PKCS#1) format
This is a convenience function for providers that only have access
to raw RSA signing (mainly smartcard providers). This is a built-in
function of QCA and does not utilize a provider. SHA1, MD5, MD2,
and RIPEMD160 are supported.
\param hashName the hash type used to create the digest
\param digest the digest to encode in EMSA3 format
\param size the desired size of the encoding output (-1 for automatic size)
*/
QCA_EXPORT QByteArray emsa3Encode(const QString &hashName, const QByteArray &digest, int size = -1);
/**
\class DLGroup qca_publickey.h QtCrypto
A discrete logarithm group
\ingroup UserAPI
*/
class QCA_EXPORT DLGroup
{
public:
DLGroup();
/**
Construct a discrete logarithm group from raw parameters
\param p the P parameter
\param q the Q parameter
\param g the G parameter
*/
DLGroup(const BigInteger &p, const BigInteger &q, const BigInteger &g);
/**
Construct a discrete logarithm group from raw parameters
\param p the P parameter
\param g the G parameter
*/
DLGroup(const BigInteger &p, const BigInteger &g);
/**
Standard copy constructor
\param from the group to copy from
*/
DLGroup(const DLGroup &from);
~DLGroup();
/**
Standard assignment operator
\param from the DLGroup to copy from
*/
DLGroup & operator=(const DLGroup &from);
/**
Provide a list of the supported group sets
\param provider the provider to report which group sets are
available. If not specified, all providers will be checked
*/
static QList<DLGroupSet> supportedGroupSets(const QString &provider = QString());
/**
Test if the group is empty
*/
bool isNull() const;
/**
Provide the p component of the group
*/
BigInteger p() const;
/**
Provide the q component of the group
*/
BigInteger q() const;
/**
Provide the g component of the group
*/
BigInteger g() const;
private:
class Private;
Private *d;
};
/**
\class PKey qca_publickey.h QtCrypto
General superclass for public (PublicKey) and private (PrivateKey) keys
used with asymmetric encryption techniques.
\ingroup UserAPI
*/
class QCA_EXPORT PKey : public Algorithm
{
public:
/**
Types of public key cryptography keys supported by QCA
*/
enum Type {
RSA, ///< RSA key
DSA, ///< DSA key
DH ///< Diffie Hellman key
};
/**
Standard constructor
*/
PKey();
/**
Standard copy constructor
\param from the key to copy from
*/
PKey(const PKey &from);
~PKey();
/**
Standard assignment operator
\param from the PKey to copy from
*/
PKey & operator=(const PKey &from);
/**
Test what types of keys are supported.
Normally you would just test if the capability is present, however
for PKey, you also need to test which types of keys are available.
So if you want to figure out if RSA keys are supported, you need to
do something like:
\code
if(!QCA::isSupported("pkey") ||
!QCA::PKey::supportedTypes().contains(QCA::PKey::RSA))
{
// then there is no RSA key support
}
else
{
// there is RSA key support
}
\endcode
To make things a bit more complex, supportedTypes() only
checks for basic functionality. If you want to check that
you can do operations with PEM or DER (eg toPEM(), fromPEM(), and
the equivalent DER and PEMfile operations, plus anything else
that uses them, including the constructor form that takes a
fileName), then you need to check for supportedIOTypes() instead.
\param provider the name of the provider to use, if a particular
provider is required.
\sa supportedIOTypes()
*/
static QList<Type> supportedTypes(const QString &provider = QString());
/**
Test what types of keys are supported for IO operations
If you are using PKey DER or PEM operations, then you need
to check for appropriate support using this method. For example,
if you want to check if you can export or import an RSA key, then
you need to do something like:
\code
if(!QCA::isSupported("pkey") ||
!QCA::PKey::supportedIOTypes().contains(QCA::PKey::RSA))
{
// then there is no RSA key IO support
}
else
{
// there is RSA key IO support
}
\endcode
Note that if you only want to check for basic functionality
(ie not PEM or DER import/export), then you can use
supportedTypes(). There is no need to use both - if the key type
is supported for IO, then is also supported for basic operations.
\param provider the name of the provider to use, if a particular
provider is required.
\sa supportedTypes()
*/
static QList<Type> supportedIOTypes(const QString &provider = QString());
/**
Test if the key is null (empty)
\return true if the key is null
*/
bool isNull() const;
/**
Report the Type of key (eg RSA, DSA or Diffie Hellman)
\sa isRSA, isDSA and isDH for boolean tests.
*/
Type type() const;
/**
Report the number of bits in the key
*/
int bitSize() const;
/**
Test if the key is an RSA key
*/
bool isRSA() const;
/**
Test if the key is a DSA key
*/
bool isDSA() const;
/**
Test if the key is a Diffie Hellman key
*/
bool isDH() const;
/**
Test if the key is a public key
*/
bool isPublic() const;
/**
Test if the key is a private key
*/
bool isPrivate() const;
/**
Test if the key data can be exported. If the key resides on a
smart card or other such device, this will likely return false.
*/
bool canExport() const;
/**
Test if the key can be used for key agreement
*/
bool canKeyAgree() const;
/**
Interpret this key as a PublicKey
\sa toRSAPublicKey(), toDSAPublicKey() and toDHPublicKey()
for protected forms of this call.
*/
PublicKey toPublicKey() const;
/**
Interpret this key as a PrivateKey
*/
PrivateKey toPrivateKey() const;
/**
test if two keys are equal
\param a the key to compare with this key
*/
bool operator==(const PKey &a) const;
/**
test if two keys are not equal
\param a the key to compare with this key
*/
bool operator!=(const PKey &a) const;
protected:
/**
Create a key of the specified type
\param type the name of the type of key to create
\param provider the name of the provider to create the key in
*/
PKey(const QString &type, const QString &provider);
/**
Set the key
\param k the key to assign from
*/
void set(const PKey &k);
/**
Interpret this key as an RSAPublicKey
\note This function is essentially a convenience cast - if the
key was created as a DSA key, this function cannot turn it into
an RSA key.
\sa toPublicKey() for the public version of this method
*/
RSAPublicKey toRSAPublicKey() const;
/**
Interpret this key as an RSAPrivateKey
\note This function is essentially a convenience cast - if the
key was created as a DSA key, this function cannot turn it into
a RSA key.
\sa toPrivateKey() for the public version of this method
*/
RSAPrivateKey toRSAPrivateKey() const;
/**
Interpret this key as an DSAPublicKey
\note This function is essentially a convenience cast - if the
key was created as an RSA key, this function cannot turn it into
a DSA key.
\sa toPublicKey() for the public version of this method
*/
DSAPublicKey toDSAPublicKey() const;
/**
Interpret this key as a DSAPrivateKey
\note This function is essentially a convenience cast - if the
key was created as an RSA key, this function cannot turn it into
a DSA key.
\sa toPrivateKey() for the public version of this method
*/
DSAPrivateKey toDSAPrivateKey() const;
/**
Interpret this key as an DHPublicKey
\note This function is essentially a convenience cast - if the
key was created as a DSA key, this function cannot turn it into
a DH key.
\sa toPublicKey() for the public version of this method
*/
DHPublicKey toDHPublicKey() const;
/**
Interpret this key as a DHPrivateKey
\note This function is essentially a convenience cast - if the
key was created as a DSA key, this function cannot turn it into
a DH key.
\sa toPrivateKey() for the public version of this method
*/
DHPrivateKey toDHPrivateKey() const;
private:
void assignToPublic(PKey *dest) const;
void assignToPrivate(PKey *dest) const;
class Private;
Private *d;
};
/**
\class PublicKey qca_publickey.h QtCrypto
Generic public key
\ingroup UserAPI
*/
class QCA_EXPORT PublicKey : public PKey
{
public:
/**
Create an empty (null) public key
*/
PublicKey();
/**
Create a public key based on a specified private key
\param k the private key to extract the public key parts from
*/
PublicKey(const PrivateKey &k);
/**
Import a public key from a PEM representation in a file
\param fileName the name of the file containing the public key
\sa fromPEMFile for an alternative method
*/
PublicKey(const QString &fileName);
/**
Copy constructor
\param from the PublicKey to copy from
*/
PublicKey(const PublicKey &from);
~PublicKey();
/**
Assignment operator
\param from the PublicKey to copy from
*/
PublicKey & operator=(const PublicKey &from);
/**
Convenience method to convert this key to an RSAPublicKey
Note that if the key is not an RSA key (eg it is DSA or DH),
then this will produce a null key.
*/
RSAPublicKey toRSA() const;
/**
Convenience method to convert this key to a DSAPublicKey
Note that if the key is not an DSA key (eg it is RSA or DH),
then this will produce a null key.
*/
DSAPublicKey toDSA() const;
/**
Convenience method to convert this key to a DHPublicKey
Note that if the key is not an DH key (eg it is DSA or RSA),
then this will produce a null key.
*/
DHPublicKey toDH() const;
/**
Test if this key can be used for encryption
\return true if the key can be used for encryption
*/
bool canEncrypt() const;
/**
Test if this key can be used for decryption
\return true if the key can be used for decryption
*/
bool canDecrypt() const;
/**
Test if the key can be used for verifying signatures
\return true of the key can be used for verification
*/
bool canVerify() const;
/**
The maximum message size that can be encrypted with a specified
algorithm
\param alg the algorithm to check
*/
int maximumEncryptSize(EncryptionAlgorithm alg) const;
/**
Encrypt a message using a specified algorithm
\param a the message to encrypt
\param alg the algorithm to use
*/
SecureArray encrypt(const SecureArray &a, EncryptionAlgorithm alg);
/**
Decrypt the message
\param in the cipher (encrypted) data
\param out the plain text data
\param alg the algorithm to use
\note This synchronous operation may require event handling, and so
it must not be called from the same thread as an EventHandler.
*/
bool decrypt(const SecureArray &in, SecureArray *out, EncryptionAlgorithm alg);
/**
Initialise the signature verification process
\param alg the algorithm to use for signing
\param format the specific format to use, for DSA
*/
void startVerify(SignatureAlgorithm alg, SignatureFormat format = DefaultFormat);
/**
Update the signature verification process with more data
\param a the array containing the data that should be added to the signature
*/
void update(const MemoryRegion &a);
/**
Check the signature is valid for the message
The process to check that a signature is correct is shown below:
\code
// note that pubkey is a PublicKey
if( pubkey.canVerify() )
{
pubkey.startVerify( QCA::EMSA3_MD5 );
pubkey.update( theMessage ); // might be called multiple times
if ( pubkey.validSignature( theSignature ) )
{
// then signature is valid
}
else
{
// then signature is invalid
}
}
\endcode
\param sig the signature to check
\return true if the signature is correct
*/
bool validSignature(const QByteArray &sig);
/**
Single step message verification
If you have the whole message to be verified, then this offers a
more convenient approach to verification.
\param a the message to check the signature on
\param sig the signature to be checked
\param alg the algorithm to use
\param format the signature format to use, for DSA
\return true if the signature is valid for the message
*/
bool verifyMessage(const MemoryRegion &a, const QByteArray &sig, SignatureAlgorithm alg, SignatureFormat format = DefaultFormat);
/**
Export the key in Distinguished Encoding Rules (DER) format
*/
QByteArray toDER() const;
/**
Export the key in Privacy Enhanced Mail (PEM) format
\sa toPEMFile provides a convenient way to save the PEM encoded key
to a file
\sa fromPEM provides an inverse of toPEM, converting the PEM
encoded key back to a PublicKey
*/
QString toPEM() const;
/**
Export the key in Privacy Enhanced Mail (PEM) to a file
\param fileName the name (and path, if necessary) of the file to
save the PEM encoded key to.
\sa toPEM for a version that exports to a QString, which may be
useful if you need to do more sophisticated handling
\sa fromPEMFile provides an inverse of toPEMFile, reading a PEM
encoded key from a file
*/
bool toPEMFile(const QString &fileName) const;
/**
Import a key in Distinguished Encoding Rules (DER) format
This function takes a binary array, which is assumed to contain a
public key in DER encoding, and returns the key. Unless you don't
care whether the import succeeded, you should test the result, as
shown below.
\code
QCA::ConvertResult conversionResult;
QCA::PublicKey publicKey = QCA::PublicKey::fromDER(keyArray, &conversionResult);
if (! QCA::ConvertGood == conversionResult)
{
std::cout << "Public key read failed" << std::endl;
}
\endcode
\param a the array containing a DER encoded key
\param result pointer to a variable, which returns whether the
conversion succeeded (ConvertGood) or not
\param provider the name of the provider to use for the import.
*/
static PublicKey fromDER(const QByteArray &a, ConvertResult *result = 0, const QString &provider = QString());
/**
Import a key in Privacy Enhanced Mail (PEM) format
This function takes a string, which is assumed to contain a public
key in PEM encoding, and returns that key. Unless you don't care
whether the import succeeded, you should test the result, as shown
below.
\code
QCA::ConvertResult conversionResult;
QCA::PublicKey publicKey = QCA::PublicKey::fromPEM(keyAsString, &conversionResult);
if (! QCA::ConvertGood == conversionResult)
{
std::cout << "Public key read failed" << std::endl;
}
\endcode
\param s the string containing a PEM encoded key
\param result pointer to a variable, which returns whether the
conversion succeeded (ConvertGood) or not
\param provider the name of the provider to use for the import.
\sa toPEM, which provides an inverse of fromPEM()
\sa fromPEMFile, which provides an import direct from a file.
*/
static PublicKey fromPEM(const QString &s, ConvertResult *result = 0, const QString &provider = QString());
/**
Import a key in Privacy Enhanced Mail (PEM) format from a file
This function takes the name of a file, which is assumed to contain
a public key in PEM encoding, and returns that key. Unless you
don't care whether the import succeeded, you should test the
result, as shown below.
\code
QCA::ConvertResult conversionResult;
QCA::PublicKey publicKey = QCA::PublicKey::fromPEMFile(fileName, &conversionResult);
if (! QCA::ConvertGood == conversionResult)
{
std::cout << "Public key read failed" << std::endl;
}
\endcode
\param fileName a string containing the name of the file
\param result pointer to a variable, which returns whether the
conversion succeeded (ConvertGood) or not
\param provider the name of the provider to use for the import.
\sa toPEMFile, which provides an inverse of fromPEMFile()
\sa fromPEM, which provides an import from a string
\note there is also a constructor form that can import from a file
*/
static PublicKey fromPEMFile(const QString &fileName, ConvertResult *result = 0, const QString &provider = QString());
protected:
/**
Create a new key of a specified type
\param type the type of key to create
\param provider the provider to use, if required
*/
PublicKey(const QString &type, const QString &provider);
private:
class Private;
Private *d;
};
/**
\class PrivateKey qca_publickey.h QtCrypto
Generic private key
\ingroup UserAPI
*/
class QCA_EXPORT PrivateKey : public PKey
{
public:
/**
Create an empty private key
*/
PrivateKey();
/**
Import a private key from a PEM representation in a file
\param fileName the name of the file containing the private key
\param passphrase the pass phrase for the private key
\sa fromPEMFile for an alternative method
\note This synchronous operation may require event handling, and so
it must not be called from the same thread as an EventHandler.
*/
explicit PrivateKey(const QString &fileName, const SecureArray &passphrase = SecureArray());
/**
Copy constructor
\param from the PrivateKey to copy from
*/
PrivateKey(const PrivateKey &from);
~PrivateKey();
/**
Assignment operator
\param from the PrivateKey to copy from
*/
PrivateKey & operator=(const PrivateKey &from);
/**
Interpret / convert the key to an RSA key
*/
RSAPrivateKey toRSA() const;
/**
Interpret / convert the key to a DSA key
*/
DSAPrivateKey toDSA() const;
/**
Interpret / convert the key to a Diffie-Hellman key
*/
DHPrivateKey toDH() const;
/**
Test if this key can be used for decryption
\return true if the key can be used for decryption
*/
bool canDecrypt() const;
/**
Test if this key can be used for encryption
\return true if the key can be used for encryption
*/
bool canEncrypt() const;
/**
Test if this key can be used for signing
\return true if the key can be used to make a signature
*/
bool canSign() const;
/**
The maximum message size that can be encrypted with a specified
algorithm
\param alg the algorithm to check
*/
int maximumEncryptSize(EncryptionAlgorithm alg) const;
/**
Decrypt the message
\param in the cipher (encrypted) data
\param out the plain text data
\param alg the algorithm to use
\note This synchronous operation may require event handling, and so
it must not be called from the same thread as an EventHandler.
*/
bool decrypt(const SecureArray &in, SecureArray *out, EncryptionAlgorithm alg);
/**
Encrypt a message using a specified algorithm
\param a the message to encrypt
\param alg the algorithm to use
*/
SecureArray encrypt(const SecureArray &a, EncryptionAlgorithm alg);
/**
Initialise the message signature process
\param alg the algorithm to use for the message signature process
\param format the signature format to use, for DSA
\note This synchronous operation may require event handling, and so
it must not be called from the same thread as an EventHandler.
*/
void startSign(SignatureAlgorithm alg, SignatureFormat format = DefaultFormat);
/**
Update the signature process
\param a the message to use to update the signature
\note This synchronous operation may require event handling, and so
it must not be called from the same thread as an EventHandler.
*/
void update(const MemoryRegion &a);
/**
The resulting signature
\note This synchronous operation may require event handling, and so
it must not be called from the same thread as an EventHandler.
*/
QByteArray signature();
/**
One step signature process
\param a the message to sign
\param alg the algorithm to use for the signature
\param format the signature format to use, for DSA
\return the signature
\note This synchronous operation may require event handling, and so
it must not be called from the same thread as an EventHandler.
*/
QByteArray signMessage(const MemoryRegion &a, SignatureAlgorithm alg, SignatureFormat format = DefaultFormat);
/**
Derive a shared secret key from a public key
\param theirs the public key to derive from
*/
SymmetricKey deriveKey(const PublicKey &theirs);
/**
List the supported Password Based Encryption Algorithms that can be
used to protect the key.
\param provider the provider to use, if a particular provider is
required
*/
static QList<PBEAlgorithm> supportedPBEAlgorithms(const QString &provider = QString());
/**
Export the key in Distinguished Encoding Rules (DER) format
\param passphrase the pass phrase to use to protect the key
\param pbe the symmetric encryption algorithm to use to protect the
key
\sa fromDER provides an inverse of toDER, converting the DER
encoded key back to a PrivateKey
*/
SecureArray toDER(const SecureArray &passphrase = SecureArray(), PBEAlgorithm pbe = PBEDefault) const;
/**
Export the key in Privacy Enhanced Mail (PEM) format
\param passphrase the pass phrase to use to protect the key
\param pbe the symmetric encryption algorithm to use to protect the
key
\sa toPEMFile provides a convenient way to save the PEM encoded key
to a file
\sa fromPEM provides an inverse of toPEM, converting the PEM
encoded key back to a PrivateKey
*/
QString toPEM(const SecureArray &passphrase = SecureArray(), PBEAlgorithm pbe = PBEDefault) const;
/**
Export the key in Privacy Enhanced Mail (PEM) format to a file
\param fileName the name (and path, if required) that the key
should be exported to.
\param passphrase the pass phrase to use to protect the key
\param pbe the symmetric encryption algorithm to use to protect the
key
\return true if the export succeeds
\sa toPEM provides a convenient way to save the PEM encoded key to
a file
\sa fromPEM provides an inverse of toPEM, converting the PEM
encoded key back to a PrivateKey
*/
bool toPEMFile(const QString &fileName, const SecureArray &passphrase = SecureArray(), PBEAlgorithm pbe = PBEDefault) const;
/**
Import the key from Distinguished Encoding Rules (DER) format
\param a the array containing the DER representation of the key
\param passphrase the pass phrase that is used to protect the key
\param result a pointer to a ConvertResult, that if specified, will
be set to reflect the result of the import
\param provider the provider to use, if a particular provider is
required
\sa toDER provides an inverse of fromDER, exporting the key to an
array
\sa QCA::KeyLoader for an asynchronous loader approach.
\note This synchronous operation may require event handling, and so
it must not be called from the same thread as an EventHandler.
*/
static PrivateKey fromDER(const SecureArray &a, const SecureArray &passphrase = SecureArray(), ConvertResult *result = 0, const QString &provider = QString());
/**
Import the key from Privacy Enhanced Mail (PEM) format
\param s the string containing the PEM representation of the key
\param passphrase the pass phrase that is used to protect the key
\param result a pointer to a ConvertResult, that if specified, will
be set to reflect the result of the import
\param provider the provider to use, if a particular provider is
required
\sa toPEM provides an inverse of fromPEM, exporting the key to a
string in PEM encoding.
\sa QCA::KeyLoader for an asynchronous loader approach.
\note This synchronous operation may require event handling, and so
it must not be called from the same thread as an EventHandler.
*/
static PrivateKey fromPEM(const QString &s, const SecureArray &passphrase = SecureArray(), ConvertResult *result = 0, const QString &provider = QString());
/**
Import the key in Privacy Enhanced Mail (PEM) format from a file
\param fileName the name (and path, if required) of the file
containing the PEM representation of the key
\param passphrase the pass phrase that is used to protect the key
\param result a pointer to a ConvertResult, that if specified, will
be set to reflect the result of the import
\param provider the provider to use, if a particular provider is
required
\sa toPEMFile provides an inverse of fromPEMFile
\sa fromPEM which allows import from a string
\sa QCA::KeyLoader for an asynchronous loader approach.
\note there is also a constructor form, that allows you to create
the key directly
\note This synchronous operation may require event handling, and so
it must not be called from the same thread as an EventHandler.
*/
static PrivateKey fromPEMFile(const QString &fileName, const SecureArray &passphrase = SecureArray(), ConvertResult *result = 0, const QString &provider = QString());
protected:
/**
Create a new private key
\param type the type of key to create
\param provider the provider to use, if a specific provider is
required.
*/
PrivateKey(const QString &type, const QString &provider);
private:
class Private;
Private *d;
};
/**
\class KeyGenerator qca_publickey.h QtCrypto
Class for generating asymmetric key pairs
This class is used for generating asymmetric keys (public/private key
pairs).
\ingroup UserAPI
*/
class QCA_EXPORT KeyGenerator : public QObject
{
Q_OBJECT
public:
/**
Create a new key generator
\param parent the parent object, if applicable
*/
KeyGenerator(QObject *parent = 0);
~KeyGenerator();
/**
Test whether the key generator is set to operate in blocking mode,
or not
\return true if the key generator is in blocking mode
\sa setBlockingEnabled
*/
bool blockingEnabled() const;
/**
Set whether the key generator is in blocking mode, nor not
\param b if true, the key generator will be set to operate in
blocking mode, otherwise it will operate in non-blocking mode
\sa blockingEnabled()
*/
void setBlockingEnabled(bool b);
/**
Test if the key generator is currently busy, or not
\return true if the key generator is busy generating a key already
*/
bool isBusy() const;
/**
Generate an RSA key of the specified length
This method creates both the public key and corresponding private
key. You almost certainly want to extract the public key part out -
see PKey::toPublicKey for an easy way.
Key length is a tricky judgment - using less than 2048 is probably
being too liberal for long term use. Don't use less than 1024
without serious analysis.
\param bits the length of key that is required
\param exp the exponent - typically 3, 17 or 65537
\param provider the name of the provider to use, if a particular
provider is required
*/
PrivateKey createRSA(int bits, int exp = 65537, const QString &provider = QString());
/**
Generate a DSA key
This method creates both the public key and corresponding private
key. You almost certainly want to extract the public key part out -
see PKey::toPublicKey for an easy way.
\param domain the discrete logarithm group that this key should be
generated from
\param provider the name of the provider to use, if a particular
provider is required
\note Not every DLGroup makes sense for DSA. You should use one of
DSA_512, DSA_768 and DSA_1024.
*/
PrivateKey createDSA(const DLGroup &domain, const QString &provider = QString());
/**
Generate a Diffie-Hellman key
This method creates both the public key and corresponding private
key. You almost certainly want to extract the public key part out -
see PKey::toPublicKey for an easy way.
\param domain the discrete logarithm group that this key should be
generated from
\param provider the name of the provider to use, if a particular
provider is required
\note For compatibility, you should use one of the IETF_ groupsets
as the domain argument.
*/
PrivateKey createDH(const DLGroup &domain, const QString &provider = QString());
/**
Return the last generated key
This is really only useful when you are working with non-blocking
key generation
*/
PrivateKey key() const;
/**
Create a new discrete logarithm group
\param set the set of discrete logarithm parameters to generate
from
\param provider the name of the provider to use, if a particular
provider is required.
*/
DLGroup createDLGroup(QCA::DLGroupSet set, const QString &provider = QString());
/**
The current discrete logarithm group
*/
DLGroup dlGroup() const;
Q_SIGNALS:
/**
Emitted when the key generation is complete.
This is only used in non-blocking mode
*/
void finished();
private:
Q_DISABLE_COPY(KeyGenerator)
class Private;
friend class Private;
Private *d;
};
/**
\class RSAPublicKey qca_publickey.h QtCrypto
RSA Public Key
\ingroup UserAPI
*/
class QCA_EXPORT RSAPublicKey : public PublicKey
{
public:
/**
Generate an empty RSA public key
*/
RSAPublicKey();
/**
Generate an RSA public key from specified parameters
\param n the public key value
\param e the public key exponent
\param provider the provider to use, if a particular provider is
required
*/
RSAPublicKey(const BigInteger &n, const BigInteger &e, const QString &provider = QString());
/**
Extract the public key components from an RSA private key
\param k the private key to use as the basis for the public key
*/
RSAPublicKey(const RSAPrivateKey &k);
/**
The public key value
This value is the actual public key value (the product of p and q,
the random prime numbers used to generate the RSA key), also known
as the public modulus.
*/
BigInteger n() const;
/**
The public key exponent
This value is the exponent chosen in the original key generator
step
*/
BigInteger e() const;
};
/**
\class RSAPrivateKey qca_publickey.h QtCrypto
RSA Private Key
\ingroup UserAPI
*/
class QCA_EXPORT RSAPrivateKey : public PrivateKey
{
public:
/**
Generate an empty RSA private key
*/
RSAPrivateKey();
/**
Generate an RSA private key from specified parameters
\param n the public key value
\param e the public key exponent
\param p one of the two chosen primes
\param q the other of the two chosen primes
\param d inverse of the exponent, modulo (p-1)(q-1)
\param provider the provider to use, if a particular provider is
required
*/
RSAPrivateKey(const BigInteger &n, const BigInteger &e, const BigInteger &p, const BigInteger &q, const BigInteger &d, const QString &provider = QString());
/**
The public key value
This value is the actual public key value (the product of p and q,
the random prime numbers used to generate the RSA key), also known
as the public modulus.
*/
BigInteger n() const;
/**
The public key exponent
This value is the exponent chosen in the original key generator
step
*/
BigInteger e() const;
/**
One of the two random primes used to generate the private key
*/
BigInteger p() const;
/**
The second of the two random primes used to generate the private
key
*/
BigInteger q() const;
/**
The inverse of the exponent, module (p-1)(q-1)
*/
BigInteger d() const;
};
/**
\class DSAPublicKey qca_publickey.h QtCrypto
Digital Signature %Algorithm Public Key
\ingroup UserAPI
*/
class QCA_EXPORT DSAPublicKey : public PublicKey
{
public:
/**
Create an empty DSA public key
*/
DSAPublicKey();
/**
Create a DSA public key
\param domain the discrete logarithm group to use
\param y the public random value
\param provider the provider to use, if a specific provider is
required
*/
DSAPublicKey(const DLGroup &domain, const BigInteger &y, const QString &provider = QString());
/**
Create a DSA public key from a specified private key
\param k the DSA private key to use as the source
*/
DSAPublicKey(const DSAPrivateKey &k);
/**
The discrete logarithm group that is being used
*/
DLGroup domain() const;
/**
The public random value associated with this key
*/
BigInteger y() const;
};
/**
\class DSAPrivateKey qca_publickey.h QtCrypto
Digital Signature %Algorithm Private Key
\ingroup UserAPI
*/
class QCA_EXPORT DSAPrivateKey : public PrivateKey
{
public:
/**
Create an empty DSA private key
*/
DSAPrivateKey();
/**
Create a DSA public key
\param domain the discrete logarithm group to use
\param y the public random value
\param x the private random value
\param provider the provider to use, if a specific provider is
required
*/
DSAPrivateKey(const DLGroup &domain, const BigInteger &y, const BigInteger &x, const QString &provider = QString());
/**
The discrete logarithm group that is being used
*/
DLGroup domain() const;
/**
the public random value
*/
BigInteger y() const;
/**
the private random value
*/
BigInteger x() const;
};
/**
\class DHPublicKey qca_publickey.h QtCrypto
Diffie-Hellman Public Key
\ingroup UserAPI
*/
class QCA_EXPORT DHPublicKey : public PublicKey
{
public:
/**
Create an empty Diffie-Hellman public key
*/
DHPublicKey();
/**
Create a Diffie-Hellman public key
\param domain the discrete logarithm group to use
\param y the public random value
\param provider the provider to use, if a specific provider is
required
*/
DHPublicKey(const DLGroup &domain, const BigInteger &y, const QString &provider = QString());
/**
Create a Diffie-Hellman public key from a specified private key
\param k the Diffie-Hellman private key to use as the source
*/
DHPublicKey(const DHPrivateKey &k);
/**
The discrete logarithm group that is being used
*/
DLGroup domain() const;
/**
The public random value associated with this key
*/
BigInteger y() const;
};
/**
\class DHPrivateKey qca_publickey.h QtCrypto
Diffie-Hellman Private Key
\ingroup UserAPI
*/
class QCA_EXPORT DHPrivateKey : public PrivateKey
{
public:
/**
Create an empty Diffie-Hellman private key
*/
DHPrivateKey();
/**
Create a Diffie-Hellman private key
\param domain the discrete logarithm group to use
\param y the public random value
\param x the private random value
\param provider the provider to use, if a particular provider is
required
*/
DHPrivateKey(const DLGroup &domain, const BigInteger &y, const BigInteger &x, const QString &provider = QString());
/**
The discrete logarithm group that is being used
*/
DLGroup domain() const;
/**
The public random value associated with this key
*/
BigInteger y() const;
/**
The private random value associated with this key
*/
BigInteger x() const;
};
/*@}*/
}
#endif
|