This file is indexed.

/usr/include/psurface/SparseMatrix.h is in libpsurface-dev 2.0.0-1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
#ifndef SPARSE_MATRIX_H
#define SPARSE_MATRIX_H

#include <vector>
#include "Vector.h"
#include "StaticVector.h"
#include <stdexcept>
#include <sstream>

namespace psurface {

/** A template class for sparse matrices. 
 *
 * \tparam T one of float, double, complex<float> or complex<double>.
*/
template<class T> class SparseMatrix
{
protected:
    struct MatrixEntry{
    MatrixEntry() : value(T(0)), col(0){};

    MatrixEntry(const T& newVal, int column){
        value = newVal;
        col = column;
    }

    T value;
    int col;
    };

    ///
    std::vector<std::vector<MatrixEntry> > data;

    ///
    int numCols;

public:
    /// Default Constructor
    SparseMatrix() : numCols(0) {
    data.clear();
    }

    ///
    SparseMatrix(int n) : numCols(n) {
    data.resize(n);
    for (int i=0; i<n; i++){
        data[i].resize(1);
        data[i][0] = MatrixEntry(T(0), i);
    }
    }

    /// Multiplication with a scalar
    void operator*=(const T& scalar) {
    for (size_t i=0; i<data.size(); i++)
        for (size_t j=0; j<data[i].size(); j++)
        data[i][j].value *= scalar;
    }

    /// The number of rows of the matrix
    size_t nRows() const {
    return data.size();
    }

    /// The number of columns of the matrix
    size_t nCols() const {
    return numCols;
    }

    ///
    void setEntry(int i, int j, const T& newValue) {
    for (size_t k=0; k<data[i].size(); k++)
        if (data[i][k].col==j){
        data[i][k].value = newValue;
        return;
        }

    data[i].push_back(MatrixEntry(newValue, j));
    }

    ///
    void addToEntry(int i, int j, const T& newValue) {
    for (size_t k=0; k<data[i].size(); k++)
        if (data[i][k].col==j){
        data[i][k].value += newValue;
        return;
        }

    data[i].push_back(MatrixEntry(newValue, j));
    }

    ///
    Vector<T> multVec(const Vector<T>& v) const {
        assert(v.size()==nCols());

        Vector<T> result(v.size(), StaticVector<T, 2>(0));

        for (size_t i=0; i<nRows(); i++)
            for (size_t j=0; j<data[i].size(); j++)
                result[i] += data[i][j].value * v[data[i][j].col];

      return result;
    }

    /// another iterative solver for nonsymmetric matrices: BI-CGSTAB
    size_t BiCGSTAB(const Vector<T>& b, Vector<T>& x, Vector<T>& r,
                  const size_t& maxIter, const T& tolerance) const {
      const float EPSILON=1e-20;
      const size_t n = numCols;

      T rho, rho_old, alpha, beta, omega, h, norm0;
      Vector<T> r0(n), p(n, StaticVector<T, 2>(0)), v(n, StaticVector<T, 2>(0)), s(n), t(n);

      r = r0 = b - multVec(x);
      norm0 = r0.length();

      rho_old = alpha = omega = 1;

      if (r.length() < (tolerance * norm0) || r.length() < 1e-15)
        return 0;

      for (size_t k = 0; k < maxIter; ++k) {
        rho = r0 * r;

        if (std::abs(rho) <= EPSILON) {
          std::ostringstream os;
          os << "Breakdown in BiCGSTAB - rho "
             << rho << " <= EPSILON " << EPSILON
             << " after " << k << " iterations";
          throw std::runtime_error(os.str());
        }

        if (std::abs(omega) <= EPSILON) {
          std::ostringstream os;
          os << "Breakdown in BiCGSTAB - omega "
             << omega << " <= EPSILON " << EPSILON
             << " after " << k << " iterations";
          throw std::runtime_error(os.str());
        }

        beta = (rho/rho_old)*(alpha/omega);
        p = r + beta*(p - omega * v);

        v = multVec(p);
        h = r0 * v;

        if (std::abs(h) < EPSILON) {
          std::ostringstream os;
          os << "Breakdown in BiCGSTAB - h "
             << h << " < EPSILON " << EPSILON
             << " after " << k << " iterations";
          throw std::runtime_error(os.str());
        }

        alpha = rho/h;
        x += alpha * p;

        s = r - alpha * v;

        if (s.length() < (tolerance * norm0))
          return k;

        t = multVec(s);
        omega = (t*s)/(t*t);

        x += omega * s;
        r = s - omega*t;

        rho_old = rho;

        if (r.length() < (tolerance * norm0)  || r.length() < 1e-15)
          return k;
      }

      throw std::runtime_error("BiCGSTAB did not converge.");
    }
};

} // namespace psurface

#endif